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Abstract: The investigation and application of nuclear reactions play a prominent role in
modern nuclear chemistry research. After a discussion of basic principles and reaction
probabilities that govern collisions between nuclei, an overview of reaction theory is presented
and the various reaction mechanisms that occur from low to high energies are examined. The
presentation strives to provide links to more standard chemical disciplines as well as to nuclear
structure.

3.1 Introduction

Current understanding of nuclear reactions has been significantly expanded by developments
in accelerator technology, which now provide nuclear science with a highly diverse arsenal of
nuclear projectiles. It is possible to probe the nucleus with beams of photons, electrons,
mesons, neutrons, antiprotons, and virtually all naturally occurring isotopes of elements
ranging from hydrogen to uranium. In addition, there is a growing capability to accelerate
radioactive nuclei off the line of beta stability.

This arsenal of tools has allowed the response of nuclei to excitation energy, angular
momentum, and neutron/proton asymmetry to be studied. Excitation energies from the
smallest allowed (excitation to the first allowed quantum state above the ground state) to
that corresponding to the capture of a thermal neutron (one binding energy By), to that
required to totally vaporize a nucleus with A nucleons (® Fig. 3.1), an excitation energy of the
order of ABy;, have all been investigated. The study of highly excited nuclei has provided new
insights into nuclear systems with bulk densities both higher and lower than the central density

@ Fig. 3.1
Reconstruction of a highly energetic nuclear collision that disintegrates a gold nucleus into
multiple nucleons and light clusters
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of ground-state nuclei, densities which nature readily accesses in astrophysical objects. Simi-
larly, the nuclear response to angular momentum from zero to that which prompts nuclei to
fission (no matter what position in the periodic table) has been examined. Most recently, the
use of secondary beams for reaction studies has allowed the study of nuclei formed in nature
during nucleosynthesis of the elements — nuclei that previously had been inaccessible to
experiment.

From a broader perspective, progress in related fields of nuclear science has frequently
evolved from nuclear reaction studies, as indicated schematically in® Fig. 3.2. Reaction studies
provide pathways for exploring nuclear structure, the formation of both new elements as well
as isotopes of known elements (Loveland 2007), and nuclear astrophysics. At the more practical
level, important nuclear applications have resulted from reaction studies, for example, nuclear
energy, nuclear medicine (both for diagnostic imaging and therapy), activation analysis, and
space-radiation effects due to cosmic-ray exposure.

The vantage point that will be maintained for the bulk of this chapter is that the atomic
nucleus can be viewed as a two-component quantum fluid, i.e., the degrees of freedom are
those associated with nucleons. Despite the quantum nature of the systems, classical analogs
can be of great heuristic value. Leading this list of analogs is that of a charged two-component
liquid drop. Here, the quantum aspects are buried in a few well-chosen coefficients of a physical
expansion.

The Fermi-Gas Model applies a thin veneer of quantum mechanics to the Liquid-Drop
Model (LDM), i.e., the Pauli exclusion principle must be obeyed by the spin %2 nucleons and
thus neutrons and protons must occupy distinct quantum levels. The energy of the top-most
occupied level in this simple picture is called the Fermi energy, Ep. There is a Fermi energy for
neutrons and another for protons, each corresponding to a chemical potential, i.e., the energy
associated with the addition or subtraction of a nucleon. The kinetic energies of the nucleons
forced by the Pauli principle lead to an internal pressure (intimately related to that which holds
up a neutron star against gravitational collapse), but, as the surface of a stable nucleus is
stationary, the pressure must return to zero at the periphery (just as it must on the surface of
a neutron star or any other self-bound stable object.)

O Fig. 3.2
Schematic representation of nuclear reactions as applied to other areas of science and
technology
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At the next higher level of sophistication, a specific quantization is envisioned by imagining
independent particles in a (real) central potential. The consequences of this confinement are
the granularization of the single-particle states labeled by orbital angular momentum (¢) and
its orientation relative to the nucleon’s spin (s). The quantum state of the nucleon, either in the
entrance or exit channel, can dictate which nuclear reaction channel dominates. Turned
around, studying reactions can provide insight into the underlying nuclear structure of the
reactants or products.

Beyond the view of nuclei as nucleons moving independently in a mean field, one
appreciates that the constituents are often engaged in complex correlations. This is akin to
what one finds in water, where correlations (induced by hydrogen bonding) must be under-
stood. However, unlike systems such as water, in which the correlations between identical units
determine the interesting material properties, the nuclear system is composed of two distin-
guishable components.

In-medium correlations have many observable effects. They influence the mass of nuclei and
if one were to create a one-body potential to mock up their effects, it would cause clustering of
levels around the Fermi surface. This, in turn, changes the density of many-body states w(E*); the
number of ways nucleons can distribute themselves into the allowed single-particle states
within an excitation energy window. The density of states is Boltzmann’s wahrscheinlichkeit
in the expression S(E*) = kg In w(E*). For all but the lightest nuclei, the state density forms
a quasi continuum as long as the excitation energy E* is greater than the binding energy of
a nucleon. This “high level density” allows for statistical treatments of reactions, in which it is
the value of w(E*) associated with a given decay path that controls the probability of that decay.
Not surprisingly, the entropy (the measure of the density of states that is extensive in
macroscopic systems) and the temperature (the inverse of the rate of increase of the extensive
measure of the density of states, i.e., S, with excitation energy) turn out to be useful concepts in
explaining the competition between decay channels of an excited compound nucleus, includ-
ing the fission channel(s), by making use of transition-state theory. This theory was developed
by a collaboration between Ewing and Wigner in the 1930s. It is perhaps only from the unique
perspective of the nuclear chemist that the utility of this theory to treat both chemical and
nuclear reaction rates can be appreciated.

These correlated many-body systems can also be viewed as isolated drops of matter, which,
if uncharged, could be infinite. Reaction studies have been called upon to explore the equation
of state (EoS) of nuclear matter and to extract any phase transitions that punctuate the phase
diagram (® Fig. 3.3). An equation of state is humankind’s attempt to interrelate the variable set
of thermodynamics, the absolute minimum set required to describe the macroscopic state of
a system. Nuclei, being two-component systems, have a “chemical composition” sector (with
chemical potentials and numbers of each as the variables, with one or the other chosen as
independent), as well as a “mechanical” sector (BV) and a “thermal” sector (T,S). Reaction
data have been able to place rather tight constraints on the incompressibility of symmetric
nuclear matter.

The isothermal incompressibility (the inverse of the compressibility) of an ideal gas is
K=—(V)(dP/dV)r= P, Itis the equivalent science (although general interest is in the adiabatic
compressibility) for nuclear systems that is sought. Insight into how this incompressibility
changes with neutron—proton asymmetry is just now becoming available. It is this part of the
EoS that dictates the behavior of supernovae, the events leading to neutron star formation, and
the structure of such stars.
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O Fig. 3.3

The nuclear temperature-density phase diagram, indicating the nuclear landscape now available
for reaction studies. The dotted trajectory shows the stepwise evolution of an energetic nuclear
collision, in steps of about 1 x 10”23 s (Adapted from Mueller and Serot 1995)
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Phase transitions are the delimiting punctuation of the EoS of any matter. One of the great
successes of recent nuclear reaction studies has been to elucidate this punctuation, in partic-
ular, the nuclear analog of a liquid—gas phase transition (© Fig. 3.3).

As mentioned above, the perspective of this chapter is that of a nuclear system composed of
neutrons and protons. The subnuclear aspects of the field are not addressed, for example, the
origin of the nucleon-nucleon force and spin, quark-gluon degrees of freedom, and weak-
interaction physics. For an overview of these subjects, see (NRC 1999).

3.2 Basic Concepts

In simplest terms, a nuclear reaction can be defined as a binary collision that alters the nucleon-
nucleon associations, just as a chemical reaction is one that alters atom-atom associations. This
change in association can produce different nuclei (via the exchange of nucleons or fusion) or
can simply excite the nuclei (different correlations within the nucleus that no longer corre-
spond to the ground state.) The latter type of reaction is called inelastic excitation. The former
type might, or might not, proceed through an intermediate.

The case in which an intermediate state is formed can be written as

a+A—C —Db+B, (3.1)

where the reactants A and a are the target and projectile that form an excited intermediate
species C*, or composite nucleus. The intermediate usually decays into a binary exit channel
indicated by the product nuclei b and B. If the reaction loses all recollection of the entrance
channel aside from quantities fixed by conservation laws (energy and angular momentum), the
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intermediate composite is called a compound nucleus (CN), (@ Fig. 3.4). In this case, exit-
channel products are formed via statistical decay on a time scale longer than ~10' s, a time
commensurate with those that characterize either collective nuclear motion (rotation or
vibration) or nucleon transit across a nucleus. At the other extreme, direct reactions occur on
a much shorter time scale (~107% s), effectively bypassing the composite nucleus state. In
reality, there is a continuum of time-dependent processes between compound and direct
reactions. Intellectually, this continuum of mechanisms can be organized as viewing each
step proceeding toward a CN as a fixed “generation” of nucleon-nucleon collisions. In a simple
direct reaction the final state — right-hand side of ® Eq. (3.1) — is reached in the first step.
Several steps are required to dissipate entrance channel energy and disperse it statistically
among all the nucleon degrees of freedom. In the language of statistical mechanics, the CN is
the case where the allowed phase space (that piece of the many-body 6N dimensional phase
space allowed by conservation laws) has been fully sampled. The kinetic process by which this
happens, organized by collision generation, is called the Multistep Compound Model, a model
developed by Feshbach, Kerman, and Koonin (Feshbach et al. 1980), and often called FKK for
short. The FKK codes commonly in use today are: EMPIRE, TALYS, and GNASH, which can be
found on the Web.

In principle, the products of a nuclear reaction can be any species permitted by conserva-
tion laws. In practice, direct reaction final channels will be strong if they possess substantial
overlap with those of the initial state. Similarly, if the reaction proceeds all the way to a CN,
strong channels will be those that capture large portions of the available phase space. Com-
pound nucleus wave functions are intractable objects. This, coupled with the myriad of equally
complex final states, allows a statistical analysis to be employed. Even so, the full 6N dimen-
sional phase space is far too large to cope with and so insight must be used to calculate the
phase space area of relevant parts (e.g., the part of phase space well described by two large
clumps of matter, rather than one, will be proportional to the fission yield.)

3.2.1 Shorthand Notation for Nuclear Reactions

The following shorthand notation is frequently employed:

target (projectile, light products) heavy products, or
A(a,b)B.

@ Fig. 3.4
Nomenclature for the time evolution of a nuclear reaction in which a composite nucleus is
produced and then forms product nuclei

Projectile + Target % Composite nucleus Products

o= EuNG

Collision stage entrance channel Equilibration Decay stage exit channel
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Note that the “products” are in plural; however, either can indicate a single particle. Typical
examples, presented in both long- and shorthand notations, for reactions between *He pro-
jectiles and a **®U target are:

4 238 242 . 23BUy(4Ee o) 242
pHe +5°U — 5%Pu+ 95 5 U(GHe))5,°Pu
4 238 239 1. 23877(4 239
SHe +5°U — 5PPu+3in;  5,°U(3He, 3n)5; Pu (3.2)
;*He + ggSU — fission; SZSU(gHe, f).

Note that “one-way” arrows are used in the standard longhand reaction notation. Reac-
tion studies are usually “one-way” exercises, i.e., equilibrium between reactants and
products is not achieved. (Notable exceptions are bombs and the National Ignition Facility
— NIF). On the other hand, Nature does achieve equilibrium (for many reactions) in the
core of stars.

Using the shorthand notation, examples of photon capture, electron knockout and neu-
tron-induced reactions are, respectively:

BCa(y, n)2C(e, & p)*® Pb(n, 2n) (3.3)

3.2.2 Mass-Energy Conservation: The Q-Value

The most fundamental constraint on any nuclear reaction is established by mass-energy
(E= M) conservation. The Q-value for a reaction is the rest-mass energy difference between
the reacting nuclei and the product nuclei:

Q= Z M (reactants)c* — Z My(products)c?, (3.4)

where M, is the rest mass of the nucleus. Nuclear mass-energy is tabulated in terms of mass
excess A, which is often given in units of energy rather than mass (see © Sect. 11.6 of the
Appendix of this Volume, where it is denoted by D):

A= (My— Au)d, (3.5)

where A is the mass number and u is the unified atomic mass unit (1 u & =931.494 MeV). The
Q-value can be rewritten as

Q = [A(projectile) + A(target)] — Z A(products) (3.6)

Sources of mass-excess values, as well as reaction and structure data, can be found in
NNDC (2010). If the rest mass of the reactants exceeds that of the products, the reaction is
exothermic (Q > 0) and there is no energy threshold for the reaction. If Q is negative, the
reaction is endothermic and projectile kinetic energy must be converted into rest-mass energy
to compensate for this deficiency. Elastic scattering is defined by Q = 0.

In terms of writing energy-balanced (chemical-like) equations, Q-values correspond to
product-side energy release. This is opposite to the sign convention for enthalpies, which can
be viewed as reactant-side energy inputs. (Thus a negative enthalpy corresponds to a positive
Q-value, i.e., the energy released in the reaction.) In a chemical reaction, the energy change
comes from alteration of the atom associations, while in a nuclear reaction, the energy release
comes from a change in the associations (i.e., correlations) at the nucleon level.

Two examples of concern in Big Bang nucleosynthesis, also discussed in © Chap. 12 of
Vol. 2, are:

'H+ 'H— ‘He; Q= +19.8MeV, (3.7)
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‘He + |H — TH+He; Q= —18.4 MeV. (3.8)

The first reaction (with a positive Q-value) is an important pathway in element formation; the
second (with a negative Q-value) hinders destruction of “He in stellar environments.

All (n,y) reactions (called neutron capture) on stable target nuclei are exothermic, as are all
(p>y) reactions on stable nuclei. These Q-values are no more than the release of energy
corresponding to the binding energy of that nucleon. One can think of this energy as the
energy difference between an unbound nucleon at zero energy and the Fermi energy, which
while approximately 30 MeV above the bottom of a one-body potential is, by definition, 1 By
below zero. The condition By = 0 defines the drip lines, i.e., the limits of nuclear stability with
respect to the strong force.

Charged-particle reactions with heavier nuclei can have positive or negative Q-values. If the
collective binding energies of the products are greater than that of the reactants, as it would be
the case if the products were closer to the peak in the binding-energy curve than the reactants,
the Q-value will be positive. Negative Q-values occur, for example, when nuclei on the leading
edge of the binding energy curve, such as '°C and }°O, are broken up into still lighter nuclei or
when nuclei heavier than Fe fuse to build a heavier nucleus. Cosmic-ray-induced reactions that
occur in the atmosphere, relevant to Li, Be, and B nucleosynthesis in nature and also to space
travel, are examples of reactions with negative Q-values. (Such reactions are perhaps the
principal impediment to long-duration space travel by humans.)

1H+4°0 — B+ /Be; Q= —25.3MeV (3.9)

In reactions involving complex nuclei, two important quantities related to the Q-value, and
also to the incident beam energy, are the excitation energy E* (or equivalently U) and the
threshold energy Ey,. The excitation energy is the excess energy deposited in the product nucleus
(© Fig. 3.5). For excitation energies below one By, the discretized nature of E* is important.

The threshold energy is the minimum projectile energy required to form the product
nucleus in its ground state. Compound nucleus formation provides a simple example of this
concept: target (t) + projectile (p) — CN. In this case, energy and linear momentum
conservation require (in the nonrelativistic limit):

mass—energy : A+A, +E, = Acy + Eon + EF, (3.10)
linear momentum :  p, = \/2MyE, = v/2McnEcn = pon, (3.11)
which gives : E* = (A¢/Acn) Er + Q. (3.12)
Since when : E* =0,E, = Ey, then (3.13)

Eq = (Acn/ A (—Q). (3.14)

If Qis positive, there is no energetic threshold to limit the reaction. If Q is negative, energy
in excess of the Q-value must be supplied to account for the center-of-mass motion of the
composite nucleus. Equations for the situation in which two products are formed can be found
in standard texts (e.g., Krane 1988; Cottingham and Greenwood 2001).

Under common reaction conditions during the first 50 years of nuclear reaction studies, the
lighter of the two partners was the projectile incident on a heavier target at rest. However, with
the advent of modern heavy-ion accelerators, this situation can now be interchanged, permit-
ting the study of systems in which a heavy projectile is used to bombard a lighter target (reverse
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@ Fig. 3.5

Schematic description of the increasing density of nuclear levels as the excitation energy U
increases above the minimum in the potential energy (ground state). The abscissa in this plot is
a deformation coordinate that represents the “reaction coordinate” and shows the change in
level density as the system follows a one-dimensional path toward one possible decay mode, i.e.,
fission. The lowest density of states along this path is indicated for the height of the fission barrier
Bs. In this figure U is used for the excitation energy. This is consistent with the use of U in
thermodynamics to indicate the internal energy. The excitation energy E is the energy above the
ground-state energy (mass) and in this example is indicated by the horizontal arrow

v

kinematics). This situation provides a unique experimental environment in which the reaction
products are focused forward. Most recently, it has become possible to create reactions between
colliding beams of heavy nuclei (e.g., Au + Au), thereby retrieving the available energy lost to
center-of-mass motion in conventional fixed-target collisions.

3.2.3 The Nuclear Potential Energy: Coulomb Barrier Effects

A second energetic factor, independent of the Q-value, is imposed by the nuclear potential
energy, which summarizes the respective forces at play in atomic nuclei. As shown in ®© Fig. 3.6,
the potential energy for a complex nucleus is the sum of

1. A central attractive well created by the strong nuclear force acting at short range on the
constituent neutrons and protons, and

2. A repulsive Coulomb interaction of long range acting between the positive charges of the
target and projectile.

The saturated, short-ranged nature of the attractive nucleon-nucleon interaction creates an
approximately uniform mean field inside the nucleus, giving rise to a nearly flat behavior of
the nuclear potential. Near the nuclear periphery, the long-range Coulomb repulsive interac-
tion overpowers the short-range nuclear attraction, giving rise to the Coulomb barrier and
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O Fig. 3.6

(a) A schematic representation of the nuclear potential energy as a function of the distance from
the center of a complex nucleus is shown. Neutrons (left) do not experience Coulomb repulsion,
as do protons (right). The Fermi energy level is indicated by &¢. (b) A potential plot to scale for
neutrons and protons in *°Ca
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a subsequent decrease in the potential at large distances according to the 1/r law. The actual
nuclear potential energy will be multidimensional if spherical symmetry is broken by the
ground state being deformed, as always happens at midshell, or when fission-like phenomena
are being treated.

Using Gauss’ Law and assuming that the charge is uniformly distributed within a sphere of
radius Rc, the Coulomb potential (i.e., electric potential energy) has the following form:

2
Ve(r) = L4e 1'44erZt MeVfm; r > Rc

r
ZteZ 7‘2
Vc(r):Z;RC (3_R_é); r < Rc.

Here Z, and Z are the respective charges of the projectile and target nuclei and r is the
separation distance between the centers of charge of the colliding nuclei.

The Coulomb barrier BZ"(in the center of mass) can be estimated as the interaction of
nearly touching spheres, i.e., B™ = V¢ (Rc), where Rc = rC(AP”3 + A'?). Empirical studies
suggest a value of 7c ~ 1.4-1.6 fm, also discussed in © Sect. 2.2.3.1 of Chap. 2 in this volume.
As with the Q-value, it is necessary to correct for center-of-mass motion, so that in the

(3.15)

laboratory frame, the projectile energy required to surmount the Coulomb barrier is
BE® = (Acn/Ar) B (3.16)

For charged particles with kinetic energies below the Coulomb barrier, the projectile
usually elastically scatters from the target (discussion of Coulomb excitation below), leaving
the reactants unchanged. Once the relative kinetic energy of the colliding pair becomes
comparable to the Coulomb barrier, the projectile can classically penetrate into the attractive
nuclear potential and produce a nuclear reaction. (Barrier penetration with lab energies below
B can occur but the probability is low.) This energy can be supplied by particle accelerators or
in nature by either the high temperatures achieved in the core of a star or by the various cosmic
accelerators that generate the high-energy nuclei found in cosmic rays. The Coulomb barrier is
the energetic factor that determines the rate of reactions between charged nuclei at low energy.
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This barrier also controls the decay rate for channels for which a charge separation is generated.
Examples of the latter are all decay channels of an excited CN producing charged particles in
the exit channel, ground-state (radioactive) decay via alpha-particle emission and fission.

Reactions between charged species first become probable when the projectile kinetic energy
increases to values near the Coulomb barrier energy, permitting the tails of the nuclear matter
distributions to overlap, ® Fig. 3.7. Because of the diffuse tail of the matter distribution and
quantum penetration, it is possible for reactions to occur below the nominal Coulomb barrier.
Most often, such reactions involve Coulomb excitation or the transfer of one or a few nucleons
at the nuclear surface. However, more complex reactions can occur, including amalgamation of
target and projectile, although with low probability. As the overlap between the two nuclear
matter distributions increases, the probability for nuclear reactions involving many or all
nucleons becomes increasingly probable.

3.2.4 Angular Momentum Effects: The Centrifugal Barrier

A second repulsive energetic factor is due to the orbital angular momentum associated with
noncentral collisions. As shown in ® Fig. 3.8, initial projectile trajectories can be characterized
semiclassically in terms of an impact parameter b, which is the distance between a given
trajectory and one that passes through the center of the target.

The orbital angular momentum /¢# is quantized, so that for a projectile of mass m and
velocity v,

(h = (mv)b, (3.17)

For the case of two colliding spheres with sharp surfaces, the maximum value of the impact
parameter is determined by the touching condition

bmax = Ry + Ry, (3.18)

where R, and R, are the respective radii of projectile and target nuclei as shown in the left panel
of © Fig. 3.9.

In a classical geometrical model, the maximum angular momentum for the collision of
objects with a sharp surface is then,

Copax B = mVbpay = mv(RP + Rt) = mvr, (AIIJ/3 + Atl/3). (3.19)

@ Fig. 3.7
Schematic picture of the increasing density overlap between projectile p and target t as two
complex nuclei pass by one another
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O Fig. 3.8

Generation of angular momentum ¢h for projectiles with different impact parameters b. Each
annular ring corresponds to the area defined by a given impact-parameter range and its
associated /¢-value. The indicated direction of rotation corresponds to “glancing” collisions
represented by the two upper projectile trajectories. The middle trajectory leads to a “head-on”
collision without angular momentum generation
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@ Fig. 3.9
Left: Touching-spheres model of a nuclear collision. Right: Square-well nuclear potential,
corresponding to a nucleus with a sharp surface
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The amount of energy tied up in rotational energy E,.. depends on the impact parameter
and constitutes a centrifugal barrier,
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where p is the reduced mass of the system, proportional to A,A/(A, + Ay). (The constant
hic = 197.3 MeV fm simplifies calculations when combined with the numerical value of u =
931.5 MeV/c).

Three additional points should be noted about this “barrier.” First, it drops off with
distance much faster than the Coulomb barrier, i.e., 1/1* versus 1/7. Second, it is not the result
of a real interaction. Rather, it can be viewed as removing that fraction of the energy from the
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entrance channel that must be “spent” in angular momentum conservation and is thus not
available for a reaction. In the standard language of chemistry, the relative separation is the
reaction coordinate. The energy tied up in conserving angular momentum is not available to
advance the reaction coordinate. Finally, it is this term in the expression for the energy that
when put into the quantum mechanics (one-body) problem forces the wave functions to go to
zero at the origin. The combined effects of the Coulomb and centrifugal barriers form
independent constraints on the probability for a nuclear reaction.

The angular momentum involved in a reaction has important consequences, ranging from
nuclear spectroscopic studies at low-angular momentum to the rotational instabilities that lead
to fission, rotating dinuclear configurations (@ Sect. 3.4.2), and for populating the highly
deformed local minima responsible for fission isomers and super-deformed nuclei. For
example, in a *>*U + ***U collision, angular momenta up to £.,/ ~ 1,000 7 are possible.
However, for values above ¢7 =~ 80-100 7 the composite system becomes rotationally unstable
and cannot fuse. Thus all of the cross section associated with angular momentum above this
stability limit is associated with reaction channels other than CN formation.

3.2.5 Summary of Energetic Factors in Nuclear Reactions and the
Separation of Thermodynamic and Kinetic Factors

To form a composite nucleus, the threshold energy must be exceeded and the available energy
must exceed the combined Coulomb and centrifugal barriers for the reaction probability to be
appreciable. The threshold energy is imposed by mass-energy conservation and is important
only for negative Q-values. The Coulomb barrier applies only to charged-particle reactions.
The centrifugal barrier is not a fundamental constraint since ¢ = 0 is always possible. (Also
recall that / is not a good quantum number if the potential is not spherically symmetric. This
means that /-waves can mix in such cases. However, as parity is a good quantum number, even
values of £ mix with even and odd with odd.) As a general rule, the Coulomb barrier dominates
for charged-particle-induced reactions, except for some cases where light nuclei are involved.
For (n,y) reactions on stable nuclei, the Q-value is always positive and the Coulomb barrier is
zero, so only the centrifugal barrier constraint is relevant.

If the nuclei on either side of the reaction can exist only in one (i.e., the ground) or a few (as
in the products of a direct reaction) states, the entropy of the participants is small as is the
temperature T. Under these conditions, a thermodynamic discussion reduces to one of
enthalpy (as the “SdT” term, i.e., the thermal term, in the free energies is tiny.) The Q-value
represents the negative of the enthalpy, so a positive Q-value represents a spontaneous reaction.
At T'=0, there are only two possible values of the degree of reaction: 0 (i.e., none) or 1 (all). So
given enough time, something thermodynamics cannot give insight into, a positive Q-value
will yield 100% products. (An energetically downhill reaction at equilibrium will yield 100%
products at T= 0, a case realized in simple radioactive decay.) The barriers (both Coulomb and
centrifugal) are kinetic factors. They do not influence ultimate equilibrium constants but they
do determine rates (in the same way that the height of a chemical transition state determines
the rate of a chemical reaction).

With the exception of the case of stars, or perhaps ultimately earth-bound fusion
reactors, rates rather than true equilibrium are the concern. (As the reverse reactions
required for true equilibrium do not occur.) Thus the description of the decay of a CN is
a kinetic model.
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3.2.6 Cross Sections: An Introduction

The compound nucleus scenario described in the previous section provides a useful framework
for discussing the probability for a nuclear reaction as characterized by its cross section. As long
as the excitation energy is not so high that internal thermal equilibration is short circuited, one
can separate the formation process from the decay. When this is the case, the reaction
probability can be factored into two terms: (1) the total probability for the projectile and
target to fuse (entrance channel), and (2) the individual probabilities for formation of each
product nucleus (exit channel). The total cross section can be defined more precisely in terms
of the difference between the incoming and outgoing flux of beam particles. For specific exit
channels, the production cross section is the fraction of the total cross section that yields
a given product nucleus. Such a description fits equally well for direct reactions, which do not
involve the intermediate composite-nucleus step.

In estimating the total reaction probability, a simple geometric touching-spheres model
provides a useful benchmark calculation (@ Fig. 3.9). In this model, a reaction will occur if the
impact parameter b is less than or equal to the sum of the nuclear radii. For larger values of b
there will be no reaction. The cross-sectional area defined by this geometry leads to a classical
or geometric cross section,

o8 = b, =n(Rp+R)* = nrg (A;/3 + Ai/a)z'

max

1y &~ 1.40 — 1.60 fm. (3.21)

)

For medium-mass nuclei, this value has dimensions of order 10~2* cm?, which defines the
unit for cross sections, the barn (b); i.e.,

lbarn = 1.0 x 107*cm? = 100 fm?. (3.22)

For projectile energies well above the threshold and/or Coulomb barrier, ® Eq. (3.21) serves as
a good approximation for the total reaction cross-section, op ~ 5.

For neutron-capture (n,y) reactions at very low energies (<1 MeV), microscopic effects
come into play, leading to significantly enhanced cross sections. Since (n,y) reactions can
proceed without threshold or Coulomb barrier limitations, reactions can occur at very low
energies. More importantly, the wave nature of matter becomes the dominant factor. At very
low energies (thermal, i.e., 300 K, energies correspond to an average kinetic energy of 0.025 eV)
the neutron reduced de Broglie wave length (% = h/p = 1/k) is much larger than the nuclear
radius; i.e., £ > R . The reduced de Broglie wave length is the reciprocal of the wave number
% = 1/k, where k= (2mE)""*/h. Thus, for very low neutron energies, the values of o can greatly
exceed 0.5

Between the thermal and geometric extremes (i.e., between where the de Broglie wave
length dominates and the width of the average state greatly exceeds the spacing between states)
there is a resonance region where the cross section is characterized by sharp spikes at well-
defined energies. All three of these regions are illustrated schematically in © Fig. 3.10.

On the other hand, charged-particle-induced reactions at low energies are suppressed by the
Coulomb barrier. To account for this effect, a simple modification of the form

or = 0%°(1 — Bc/E,); E, > Bc (3.23)

provides a good first approximation to the cross-section dependence on bombarding energy.
By employing more sophisticated models that account for the diffuse nuclear surface and
diffraction effects, a more quantitative description of the reaction cross section can be
obtained.
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@ Fig. 3.10

Left: Schematic representation of the excitation function for the capture of neutrons in a (n,y)
reaction. In this figure the velocity of the neutron is indicated by u,,. Right: Total cross section
dependence on bombarding energy per nucleon for a charged-particle reaction
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An important component of the reaction cross section is the relative distribution of angular
momenta, or /-wave distribution, generated in a collision. Angular momentum affects the
population of quantum states of a given spin in direct reactions and is also a major factor in
generating rotating nuclei that stretch axially into highly deformed nuclear shapes (Janssens
and Khoo 1991). Angular momentum also destabilizes nuclei toward fission, much as a high-
charge content does. In the geometric model the angular momentum is given by ¢/ = mvband
Linaxft = mv(Ry, + Ry), as shown in ® Fig. 3.8, and thus it is possible to partition the cross section
by impact parameters,

0¥ =n(bj,, — b)) = it [(L+1)* — 2] = nA? (20 + 1). (3.24)
By summing over all £-waves the total reaction cross section, a5 , is then given by
Lmax
o8 =ity (24 1) = 12 (byar + 1) (3.25)
=0

In the simple black-disk model described above, nuclear effects of the diffuse nuclear
surface and the discrete (i.e., quantum) nature of the allowed nuclear structure have been
ignored and it is assumed that nuclear matter is perfectly opaque. The optical model addresses
these omissions and is the subject of the next major section. One of the major results of this
model is the introduction of ¢-dependent transmission coefficients, T,, where 0 < T, < 1. The
reaction cross section then becomes

op =Y omi®» 20+ 1)T. (3.26)
l 14

These transmission coefficients are then the probability that the target-projectile collision
will penetrate the interaction barrier and produce a nuclear reaction. Thus as ¢ increases, T,
decreases; that is, Ty = 1 corresponds to complete absorption and T, = 0 to pure elastic
scattering.
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3.2.7 Cross Sections, Excitation Functions, and Angular Distributions

Experimentally, evidence for a target-projectile interaction can be gained from measuring the
probability for formation of the products that populate the various exit channels. This
information then serves as the basis for interpretation of the reaction mechanism through
which a nuclear collision proceeds. It may also provide essential data for nuclear astrophysics,
as described in® Chap. 12 of Vol. 2, and for evaluating and implementing nuclear applications,
discussed in © Chaps. 38 and © 39 of Vol. 4).

The total reaction cross section is the sum of all possible reaction channels:
or = Y ad(a,b). Exit channels may involve only a single heavy nuclear product, as in the

b

case of (n,7), reactions two fragments (as in fission) or even multiple fragments, as in multifrag-
mentation. By measuring all possible exit channels, or can be determined. Alternatively, g can
be measured with beam-attenuation measurements by measuring the rates [particle/s] of the
beam reaching a detector with the target in and with it out (see the Addendum).

Measurements of production cross sections are performed with a wide range of both
radiochemical and direct counter techniques. Historically, radiochemical techniques were
particularly useful for measuring heavy residues, for which discrete Z and A identification
are difficult to determine with nuclear particle detectors in reactions with normal kinematics.
However, with the availability of very heavy-ion beams and the widespread use of reverse
kinematics, the measurement of mass (dos/dA), charge (do/dZ), and isotope (do, do 4/
dAdZ) distributions from direct counter techniques are now routinely done. For heavy
residues, these values are frequently summarized graphically in terms of an excitation function,
or cross section as a function of projectile energy, as in © Fig. 3.11. Extensive listings of
production cross sections are maintained in several databases (IAEA 2010; NEA 2010;
NNDC 2010; RNDC 2003).

In conducting direct counter experiments, the emission of reaction products over the full
4m of solid angle (0,¢) must be taken into account, as well as the transformation of laboratory
data into the center-of-mass system (Krane 1988). Thus, measurements of the angular distri-
bution, i.e., differential cross section as a function of angle do (6,¢)/dQ, must be made. In the
absence of spin-polarized targets or projectiles, the cross section is independent of azimuthal
angle ¢. In this case, the angular distribution is characterized by the single differential cross
section, do(0)/dQ, where Q is the solid angle into which the particles are emitted. The
production cross section is then given by

2n

o(a, b) = J IM d0 = and"(‘)) sin0 do. (3.27)

dQ dQ
0

For statistical decay of a composite nucleus with no angular momentum, particles are
emitted isotropically; that is, do (0)/d€ is independent of angle in the center-of-mass system.
Thus, do (0)/dQ2 = constant or do (6)/d6  sinf. If the composite nucleus is formed in a state of
high angular momentum with the axis of rotation oriented perpendicular to the beam
direction (i.e., from an ensemble of reactions, the angular momenta are uniformly distributed
in a plane perpendicular to the beam), as in the approximate case in heavy-ion reactions, then
one observes strong forward-backward peaking, reaching a limiting value of do(0)/dQ,
o 1/sinf or do(0)/d0 = constant. Schematic angular distributions for these two extremes are
shown in © Fig. 3.12.
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@ Fig. 3.11
Excitation function for the "®’Au(*He, xn)?®* Tl reaction (Lanzafame and Blann 1970)
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Schematic angular distributions for particle emission from an equilibrated hot nucleus. Solid line

is for a system with no angular momentum and dashed line is an upper limit for very high angular
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On the other hand, for direct reactions, the projectile-like products tend to be focused in
the direction of the incident beam momentum vector. Depending on the quantum state,
collision energy and time scale, forward peaking or peaking at specific angles will be observed.
Thus, angular distributions serve as key indicators of the degree of equilibration achieved in
a reaction, as well as providing a means of evaluating the reaction mechanism and imparted
angular momentum.

One of the most sensitive tests of any nuclear reaction model is its success in reproducing
absolute doubly differential cross sections d*s/dQ dE. In order to obtain the differential cross
section for a given exit channel, it is necessary to integrate over the full kinetic energy
distribution of the emitted particles at a specific angle,
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dE. (3.28)

It is the kinetic energy distribution as a function of angle that reveals the physics content of
a nuclear reaction most transparently. For a fully equilibrated CN, the spectra of evaporated
light particles are Maxwellian in shape and unchanging in angle in the center-of-mass system.
The spectra of charged particles are suppressed at low energies by the Coulomb barrier. Two-
body direct reactions exhibit discrete spectral lines or resonances, depending on the nuclear
structure sampled in the collision. The two-body (simple momentum balance) scenario also
produces a good first-order description of fission, yielding Gaussian-like fragment energy
spectra resulting from highly stretched breakup configurations.

3.2.8 Cross-Section Measurements

Determination of the cross section for a nuclear reaction product requires measurement of the
reaction rate, R = number of events/unit time. As in any two-body collision (second-order rate
process), the rate is the product of a target-projectile collision factor cn,n, and the “probabil-
ity” ¢ that if a collision occurs, a specific product will be formed, i.e.,

dN(a,b

% = R(a,b) = enymo(a,b), (3.29)
where ¢ is a coefficient and the dimensions of n,n, are defined by the geometry of the
experiment. Three cases are of general interest:

1. Accelerator-based bombardments in which a beam of particles n, is incident on a planar
target.

2. Nuclear reactors, where a gas of neutrons permeates 1, target nuclei.

3. Stellar interiors, where the reactants act as two interacting gases.

Practical aspects of cross-section calculations are discussed in the Addendum at the end of the
chapter.

3.3  Scattering Theory

The presentation in the preceding section is meant to give a general overview of relevant
concepts needed to describe nuclear reactions. In this section a treatment of quantum scatter-
ing is presented. This presentation is meant to facilitate a comparison between various types of
scattering and to link nuclear reactions to structure. Additional background on scattering
theory can be found in (Bertulani 2009).

3.3.1 Preliminaries

Before dealing with the scattering problem, the quantum objects under study should be
considered. If the neutron and proton constituents of the nucleus were noninteracting, self-
bound nuclei would not exist. One might posit that the binding energy is the sum of attractive
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two-body interactions, all A(A — 1)/2 of them. This amounts to making two assumptions:
(1) that neutrons and protons are the only constituents in nuclei, i.e., nucleons are elementary
particles and (2) that the interaction is pair-wise additive. The former assumption is formally
incorrect, but not bad when the available energy is less than the mass of the pion, the lightest
field particle that mediates the residual strong force (nuclear force). The second assumption is
also likely wrong. Most nucleon-based descriptions of the residual strong force include 3-body
forces between nucleons, but the origin of these — beyond pair-wise additive contributions — is
unclear. Such interaction terms could come from the fact that nucleons are not truly elemen-
tary and the employed degrees of freedom (DoF), those of the nucleons, is an incomplete set.
(Axilrod and Teller 1943 first introduced 3-body forces in an attempt to explain the crystal
structure of solid Ar as a patch when they simplified the many-body problem by dropping all
of the degrees of freedom associated with the electrons and retaining only those associated
with the nuclear positions. Their assumption being that, if they could have solved the
problem employing all degrees of freedom, a 3-body force would not be needed.) However,
because the field-mediating bosons of Quantum Chromodynamics do interact with one
another, while they do not in Quantum Electrodynamics, pair-wise additivity would not be
expected in the former. Whatever the reason, nucleon-based theories require 3-body terms (see
also © Chap. 2 in this Volume).

High-energy electron reaction studies measuring (e,e’'p) cross sections have shown that
only 70-80% of the protons participate in independent-particle motion of the type imagined
in one-body potential models. This low “occupancy” of one-body states is caused by strong
correlations within the nucleus. These correlations are primarily between pairs of nucleons, but
a-particle clustering, sometimes called “quarteting,” in any low-density region also suppresses
one-body behavior. Nucleons are somewhat different objects inside and outside a nucleus, as
they effectively lose 0.8% of their mass, i.e., the binding energy, when transported inside
a nucleus. Often, the term “dressed” is used to describe nucleons in the nucleus.

Very recent electron scattering studies using two-nucleon knockout reactions (e,e/pp) and
(e,¢'pn), have shed considerable light on these in-medium correlations (Subedi et al. 2008).
This work showed that the overwhelming strong pair correlations are between neutrons and
protons with large relative momenta and small center-of-mass (CM) momenta (® Fig. 3.13).
Large relative momenta are expected due to the rather hard core of the nucleon-nucleon
interaction, but the tensor force undoubtedly plays a role and helps distinguish like-nucleon
versus different-nucleon correlations. The tensor force arises because the interaction between
nucleons depends on the relative orientation of their spins with respect to their relative spatial
vectors (see © Chap. 2 in this Volume).

Due to the Pauli principle, only n-p pairs can have their spins aligned and otherwise have
the same quantum numbers. These pairs are referred to as short-range correlated (SRC) pairs
and their presence strongly affects the properties of cold, dense nuclear matter, such as that
found in neutron stars. This nucleon-nucleon interaction is also required to explain the fact
that the n-p spin triplet is bound (i.e., the deuteron) while the n-n and p-p, required singlets,
are not. Consideration of n-p interactions is also essential to understand the evolution of the
phenomenological spin-orbit interaction as a function of n/p asymmetry (Otsuka 2005), one
of the most discussed topics in nuclear structure research today.

A focus on like-nucleon singlet (spin zero, i.e., BCS-like) pairing is warranted in an effort to
explain the slight variation in mass responsible for the overwhelming dominance of even-even
nuclei as well as explaining their ground-state spins. On the other hand, this myopic focus near
the Fermi energy misses the source of the bulk of nuclear binding.
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@ Fig. 3.13
The initial nucleon correlations as seen from a two-nucleon knockout experiment (left) are
summarized in a pie chart on the right (Subedi et al. 2008)
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Descriptions of nuclei based on realistic nucleon-nucleon interactions that include the
effects mentioned above have, as of this time (2010), only been able to deal with nuclei with A <
12 (Pieper et al. 2002). Above this mass number, various approximations are employed.
Simplifying this many-body problem all the way down to independent particles moving in
an overall potential is of great heuristic value and utility. (This utility does not extend to
calculation of the total binding energy. For this, one needs to add a macroscopic correction to
the total binding energy. In this macroscopic-microscopic approach, pioneered by Strutinsky
(1967), it is the macroscopic part that captures the impact of nucleon-nucleon correlations far
removed from the Fermi surface). The single-particle approximation leads to the one-body
problem, i.e., the type solved for generating hydrogenic wave functions (in this case, a solitary
e movingina 1/rpotential.) The greatly simplified (“one-body”) potentials (one for neutrons
and one for protons) are separately adjusted to explain phenomena that occur near the Fermi
surfaces for neutrons and protons. In fact, to explain behavior away from the Fermi surfaces,
the potential depths have to be made both energy-dependent and complex.

Consider a nucleon interacting with a (one-body) potential well formed by, at least, the
A — 1 interactions of this nucleon with the others. Now imagine that this potential is itself in
a large box of dimensions much larger than the range of the nuclear force (® Fig. 3.14).
Considering only the short-ranged nuclear force, outside the well the potential is zero. The
box, while large relative to nuclear dimensions, presents a boundary condition, so the box
contains (in the absence of the internal potential) all the “particle-in-a box” states. The wave
function with the lowest energy has no internal nodes; the more nodes - the higher the energy
(eigenvalue).

As the depth and width of the internal potential is “dialed up,” these particle-in-a-box wave
functions are modified — increasing the frequency in the region of the potential well and can
even localize some of them entirely within the potential well. The latter, having no probability
far-removed from the potential well, are the “bound-states.”

The presence of the attractive potential produces a positive phase shift § of the wave
function at large distance, relative to the wave function without the potential (® Fig. 3.15).
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O Fig. 3.14

Nucleon potential in a box. As the potential is made either deeper or wider, states are moved
from ones quantized only by the box boundary conditions, essential free waves, to those
confined to the central potential. The latter correspond to bound nuclear states

This phase shift is a direct consequence of the higher frequency within the range of the potential.
As the potential is made either wider or deeper, states are “sucked” in (from the box) and are
localized in the potential well. In the case of a one-dimensional square well of depth Vand width
L, the number of bound states for a particle of mass mis N=1 + [(2mV)Y2L/(nh)] where the
square brackets stand for the integer part. Every time the phase shift passes 1, another one of
the continuum (particle-in-a-box) states is “sucked” into the well. This phase shift, which plays
a central role in scattering problems, records the asymptotic compression of the wave function,
but the number of (1/2) oscillations (each producing a bound state) is lost. However, the
number of bound states for each ¢, Ny, can be recovered as it is encoded in the zero energy (i.e.,
threshold) phase shift, d,(0) = N, m. This is known as Levinson’s Theorem.

3.3.2 The Optical Model (OM)

The interaction of a nucleon with a nucleus can be modeled if the potential is made complex
(Buck et al. 1960; Hodgson 1967; Messiah 1958). The common form is
U(r,E)
=V(r,E)+iW(r,E)
= [V (E)f(r, 1y, ay) + 4as Vi(E)f (1, 15, as) + Veo(E)h(1, 10, 50) (€8) + Vi (1, ac)]
+i{ =W (E)f(r, 1y, ay) + 4asW(E)f' (1, 15, as) + Weo(E)h(r, 1so, a5 ) (€5) }.

(3.30)

where ¢/ and sh are angular momentum vectors and (¢s) is the scalar product of the vectors
fands.
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@ Fig. 3.15
lllustration of the change in a wave function u, with an attractive potential and the associated
phase shift
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Note that the potential depends on the projectile center-of-mass energy E as well as radius 7.
The former accounts for the nonlocalities (and thus generates effective masses and spectro-
scopic factors, which are related to the occupancies of single-particle states). Vand Ware the
real and imaginary parts of the potential, both of which have volume, surface, and spin-orbit-
dependent components, V., V, and V,, respectively. (The spin-dependent term given above is
appropriate for the scattering of spin ¥ particles by spin 0 nuclei; for the scattering of particles
of zero spin, there is no spin-dependent term, while for the scattering of particles of higher
spin, more complex forms are required). V. is the Coulomb potential, a term needed if the
incident particle is charged. The refracting potential Velastically scatters the incident particles,
and the absorbing potential W takes account of all the inelastic processes.

The unitless form factors (@ Fig. 3.16) are most often taken as

1
f(ryriya) =———, (3.31)
1+exp(’;iR")
and
1/ he 2f’(r 1i, a;)
h(r,ri,a;) = — > — . 3.32
() = 3 (s5) (6.2

Here f' = dfldr.

The nuclear radii are R; = ;A" and the parameters a; encode the diffuseness of the nuclear
surface. The subscript (i) allows these constants to be different for the different terms in the
potential. The spin-orbit form is analogous to the Thomas form for atoms. Relativistic
treatments generate such a term, but do not provide insight into the strength or even its
sign. The Coulomb potential can be taken to be that for uniformly charged spheres or
calculated numerically assuming form factors for the density similar to that for the potential.
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O Fig. 3.16
Form factors of the OM for the real, f(r), and imaginary, g(r) = —af'(r), components
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To calculate the observable cross sections for two particles interacting through the above
potential, Schrodinger’s equation must be solved,

hZ
2—V2W+(E— V¥ =0, (3.33)
U
where the radial part of the kinetic energy operator is (in D-dimensions)
1 0 0
le——— P 3.34
Vi 1ar or (3:34)

As the spin of the incident particle can couple in two ways to the orbital angular momen-
tum £ (to give total angular momenta of either j = £ 4= 1/2), there are two solutions for each £ to
the one-body quantum problem posed above. These solutions are identified with “+” for the
“stretched” (i.e., parallel) case and “—” for the “jack-knifed” case. In the solution of the radial
problem, the kinetic operator can be reduced to a simple second derivative by solving for the
product of r times the radial wave function, sometimes called the reduced radial wave function y.
Employing y and defining p = kr, the resulting radial wave equations become,

Eyt(p) [, Ve  (=Va+iW)f(p)+4a(Vi+iW)f (p)
i T E (3.35)
_ g(Vso =+ IE‘/Vso)h(p) o é(ept 1):| )’Z+(P) — 0 and
&y (p) | [1 Ve (W +iW)f(p) +4a(Vi +iW)f (p)
dp? E E
P (3.36)

. 0+ 1)(\150;- iWsw)h(p) E(E; 1)] ye (p) = 0.
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The wave number is k = ()" = \/(2uc2E) /fic. These (reduced) radial wave functions are
zero at the origin and beyond the nuclear field tend asymptotically to the form

v (p) o< [H(p)] — S/ [H™(p)],

’ N i (3.37)
o [Ge(p) — iFi(p)] — S~ [Ge(p) + iFi(p)],

where the terms in square brackets can be thought of as the incoming and outgoing waves and
the SF = exp(2id;) are the elements of the so-called scattering matrix, where &, are the phase
shifts associated with the nuclear potential. (If the potential is spherical, ¢ is a good quantum
number and one only needs to be concerned with the diagonal elements of this matrix, indexed
by £. If on the other hand, the potential is deformed, ¢ is not a good quantum number and
a full matrix — introduced by J. Wheeler — is required). The regular (goes to zero at the origin)
and irregular (finite at the origin) Coulomb functions F, (p) and G, (p) are solutions of
© Egs. 3.35 and © 3.36 without the nuclear terms. These functions have the asymptotic forms

1
F;(p) —— sin {p —nln2p — Eﬂn + 0/} ,
p—00

(3.38)

1
Gi(p) — cos {p —nln2p — =4n + (74 .
pP—00 2

The incoming and outgoing waves have the asymptotic forms

in : 1
H;"(p) —— exp {*l(p —nln2p —fm+ w)} ;
’ (3.39)
out : 1
H}"(p) —— exp {—1—1 (p —nln2p — —fn + 0'/)} .
p—00 2
The nonspin-flip B(0) and spin-flip A(0) scattering amplitudes are

1 & .
A(0) = —kz {(+1)Sf +¢S; — (20+1)} e Py(cosh), (3.40)
=0

1 & — io
B(0) = m; {S/ =S} 7P (cosh) , (3.41)

where o, is the (unitless) Coulomb phase shift for the ¢th partial wave, f-(0) is the (unitless)
Coulomb scattering amplitude, and 7 is the (unitless) Coulomb or Sommerfeld parameter.
These are given by

¢
op=argl({+1+in) =0p+ Ztanf1 (g),
s=0

fe(0) = —%csc (0) exp [2100 inln (sinz g)}
 L4é  pLyhe A
U =0.1575 Z,Z B /MeV' (3.43)

(3.42)

and
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(The gamma function I’ is used in the definition of the Coulomb phase shift.) There are three
potential observables for elastic scattering. The first is the differential (elastic) scattering cross
section,
dog
dQ
The above reduces to the famous Rutherford formula when the Coulomb amplitude f¢ is all
that contributes to the scattering amplitude

0) = |A* + |B). (3.44)

1442,7\ 2
doruth 5 (4E/MeV) , D2 (0 5
= =~ 7 f = —|f 3.45
10 Ifcl sin4(g) m I csc 5 m?, ( )

where D, is the distance of closest approach.
The second and the third observables are the polarization, P(0), and spin rotation, Q(0),
(Glauber and Osland 1979),

P(0)

2 ImAB* 2 ReAB*

— 2 mA> ) = -2 3.46

If the incident particle is a neutron, the total elastic cross section is finite and integrates to
- 2
aE:niZZ{(KJrI)U—SZ! +e|175[|2}. (3.47)
=0

To deduce the total inelastic (sometimes called the reaction) cross section, all one needs to
note is that for each /-wave, the outgoing wave is reduced in intensity by ISI* relative to the
ingoing wave, therefore

aRznﬂczi{(wrl)(l—|S;|2)+£(1—\S[|2)}. (3.48)
=0

The transmission coefficients can be identified with
TF = 1—|st[ (3.49)

and in so doing, one can see that the reaction cross section in the absence of intrinsic spin
effects results in © Eq. (3.26).

The total cross section, a quantity finite only for neutron scattering, comes from the sum of
the elastic and reaction cross sections. Upon canceling terms for each pair of 11 — SyI> + 1 — 5,1
terms, one gets

or = op +op =212 > {(£+1)(1+ReS]) + £(1 — ReS; ) }. (3.50)
=0

There are several interesting benchmarks related to the results of © Egs. (3.47)—(3.50). The
elastic scattering cross section (for neutrals) spans from where S, = 1 (both elastic and inelastic
cross sections are zero) to S, = —1. Thus the cross section for each ¢ lies between

0<og, <4ni*(20+1). (3.51)
When S, =0,
op, =or, =74 (20+1) thus o1, =2nA%(20+1). (3.52)
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© Equation (3.52) demonstrates that the presence of the inelastic scattering implies an
elastic contribution. This explains the factor of 2 in ©® Eq. (3.50), which indicates that the total
cross section for neutrals, that is, the case for which the elastic scattering cross section is finite,
is twice the geometric reaction value. Recalling the initial discussion of the geometric cross
section, partial waves with ¢ greater than some value ¢,,,,, do not contribute significantly to the
summations in © Egs. (3.48)—(3.50), thus the sums may be truncated.

3.3.3 The Dispersive Optical Model (DOM)

In 1926 R. de L. Kronig noticed that the reflection and absorption of light were interrelated.
The next year Hans Kramers explained this relation, essentially allowing for the calculation of
both the absorption (extinction coefficient) and the index of refraction from the measurement
of the 90° reflectance. The key concept is that the response of a system to the stimulus (in this
case light and the response in question is called the dielectric response) is dictated by a complex
quantity, for which the real and imaginary parts are “two-sides of the same coin.” The “sides”
are related to one another by energy integrals over the complementary components. (That is,
the real part at energy ¢ is related to an integral over all energies of the imaginary component
with a pole at the energy of interest, and vice versa.) For example, in the case of the complex
dielectric response (o in the equations below) of matter as a function of the frequency of the

stimulus @ )
o= 0 + 10

Ocl(w):lpj w(@) ;“2(60):_5[ n(©) 4o (3.53)

o —w 2 o —w

—00 —00
where P stands for the “Cauchy principal value” of the integral whose integrand has
a singularity. These relationships are the result of “causality”; that is, the system cannot respond
before the stimulus arrives. From the earliest days of the nuclear optical model, it was
appreciated that this relationship should be enforced, as it is in all careful optical spectroscopy.

The difficulty in imposing causality is that the interrelationships are in the form of
“dispersion relations.” That is, one must know the real (imaginary) part of the response at
all energies to deduce the imaginary (real) response at any energy. It is the “all” that provides
the stumbling block. As a consequence, this dispersive form of the optical model, or dispersive
optical model (DOM), has only limited applicability. However, recently, more effort has been
directed at the dispersive optical model analyses of data, as they have been shown to be of great
value in predicting the behavior of nuclei removed from stability. The utility of this generator is
that in addition to using scattering data (at positive energy), structural data (at negative energy,
i.e., the position of bound states) is used to fix the real part of the potential, making both parts
more robust (via the dispersion interrelationship). A concise discussion of the Kramers—Kronig
dispersion relations as applied to the dielectric response can be found in (Kittel 1986). A full
presentation of the dispersive optical model can be found in (Mahaux and Sartor 1990) and its
most recent application to nuclei as a function of n/p asymmetry can be found in (Charity et al.
2006, 2007). The most important implications of the DOM [based primarily on nucleon
knockout reactions (e,e’p) and n and p elastic scattering] are presented below.

First, the connection between the full complex potential and that used in one-body
structure models must be unmasked. The imaginary part of the potential vanishes at the
Fermi surface. Thus the real one-body potential used as a basis for simple nuclear structure
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models is only valid near the Fermi surface. Or conversely, if one is interested in phenomena
that only involve excitations near the Fermi energy, working with a real potential is valid. On
the other hand, at high excitation energies, which are likely to involve particles far above and
holes far below the Fermi surface, the imaginary component must be dealt with.

The second feature of this model is that effective masses and spectroscopic factors can be
extracted from the energy dependence of the potentials (the former from the real part and the
latter, which are related to the occupancy of single-particle states, from the imaginary part).
The most striking result of the optical model is that the potential must be made energy-
dependent if either the position of the single-particle levels or elastic scattering over a broad
range of energies are to be reproduced. While the positions of the levels near the Fermi surface
can be extracted from single-nucleon transfer reactions, (e,e'p) reactions are needed to
determine the strength functions below the Fermi surface. (These functions will exhibit
sharp peaks for orbits slightly below the Fermi surface and broad distributions for deeply
bound orbits.) This dependence is shown in © Fig. 3.17 for ***Pb.

If the dependence is linear, an effective mass (m*) can be introduced to allow the single-
particle energy to be recast in terms of a fixed potential,

(hk)* { av ] (hk)*

=2 4 | Vo+—¢| =—2+ [V, : .54
g 2m+ 0+d8(0 2m+[0+a9], (3.54)

o (mky? 1\ (mk)?
e = PO ) = 2 T V0 (3:55)
with
mek dV(r,e)
- o .F 0.7 (3.56)

Referring back to the harmonic oscillator, © Fig. 3.18 shows that an effective mass greater
(less) than the nucleon mass will decrease (increase) the single-particle level spacing, making
both the single-particle level density and many-body density of states larger (smaller).

The above discussion is associated with the finite range of the nucleon-nucleon interaction.
This can also be viewed (via a Fourier transform) as a momentum dependence of the

@ Fig. 3.17
The energy dependence of the potential needed to reproduce the positions of the single-particle
levels for 2°Pb (from Mahaux and Sartor 1990)
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O Fig. 3.18
How an effective mass affects the single-particle level spacing

m m*=2m m*=2m
a k b b k = const. d b = const.

interaction. As a consequence, the effective mass contribution mentioned above is often called
the “k-mass” or the momentum-dependent effective mass. This mass is relevant for matter
(i.e., neutron-star calculations) and its dependence on neutron—proton asymmetry has
attracted considerable attention (Li et al. 2008).

The description of real nuclei requires more than the k-mass. A second multiplicative
effective-mass term, the “omega mass” or m,,, arises from a time nonlocality of the interaction.
(As the exchange involves mesons with mass, the “throwing” and “catching” are not simulta-
neous events.) This time nonlocality can be viewed as a fundamental energy (or frequency)
effect. Following prescriptions developed by Mahaux and collaborators (Mahaux and Sartor
1990), the relative change of the effective mass from real nucleon masses can be represented by
two unitless terms,

m*

== 3.57
- mym, ( )

The “omega mass” is peaked at the nuclear surface, producing what solid-state scientists
would call surface states. In the nuclear case, this just corresponds to low-lying (i.e., near the
Fermi surface) collective excitations associated with the physical surface. The combined
effective masses and the potentials from which they are derived are shown in ® Fig. 3.19. The
k-mass suppresses the effective mass in the interior and the omega-mass produces a peak
at the nuclear surface. Also extracted from this analysis are the occupation probabilities of
single-particle levels, a subject that will be addressed in the next section when discussing single-
particle knockout reactions from nuclei far-removed from stability.

What must also be appreciated is that effective masses: (1) can be viewed as a compact
repackaging of other physics, such as momentum dependent potentials, and (2) are required
for discussing reactions as well as structure. Examples of the latter (for reactions) stem from the
fact that the spacing of single-particle levels near the Fermi surface affects the many-body
density of states ().

3.4 Near-Barrier Reaction Mechanisms

The study of nuclear reaction mechanisms has revealed a breadth of phenomena that have
subsequently stimulated advances in related areas of nuclear research, as well as in nuclear
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@ Fig. 3.19

Effect of the omega-mass on the refocusing of single-particle levels near the Fermi surface. This
focusing is the result of the requirement that the potential be “pushed in” below the Fermi
surface and “pulled out” above the Fermi surface in order to reproduce both the position of
bound states and the scattering data (from Charity et al. 2007)
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applications. The impetus to obtain a quantitative understanding of these phenomena has
motivated the development of increasingly sophisticated measurement technologies, described
elsewhere in this Handbook. Here, only an overview of the principal reactions of interest to, or
being investigated by, nuclear chemists is provided. Additional references can be found in
(Cerny 1974; Durand et al. 2001; Benenson et al. 2002).

Nuclear reaction mechanisms can be schematically separated into two general categories:
low-energy reactions that are strongly influenced by structure around the Fermi energy and
those at much higher energies where elementary nucleon-nucleon collisions become increas-
ingly important. In either case, the correlations existing within the (ground-state) projectile
and target can play determinative roles. This is true at low energy (alpha decay informs
about alpha-clustering in the low-density surface of heavy nuclei) as well as high energy
(where e -induced knockout reactions indicate an overwhelming dominance of high relative-
momentum n-p pairs.)

As the model of nuclei composed of nucleons moving independently in a one-body
potential is one that is roughly 75% correct, this mean-field approach often provides a rather
good initial description of reactions. However, above energies commensurate with the depth
of the one-body potential, this potential has little meaning and the best starting point is to
consider collisions as sequences of individual nucleon-nucleon collisions. Often a distinction
between the mean-field and nucleon-nucleon (N-N) regimes is made at bombarding energies of
about 20 MeV per projectile nucleon (20 MeV/A). Below this energy, individual nucleon-
nucleon (N-N) interactions lead to thermalization sufficiently quickly that no individual
nucleon has sufficient energy to escape the mean-field potential well. When this has been
achieved, a compound nucleus has been formed. As the relative collision energy increases, the
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energy dissipation process produces harder N-N collisions with scattered nucleon energies in
excess of the mean-field constraints, leading to prompt particle emission. The transition from
mean-field to N-N dominance as the bombarding energy increases is a continuous one,
mediated by the number of collisions that are not prohibited by the Pauli Principle (Pauli
blocking). The blocking of 2-body collisions is strong below the Fermi energy, thus leading to
surprisingly long mean-free paths at low energy, but weakens as the relative energy per nucleon
approaches the Fermi energy.

However, it must also be appreciated that in either regime (mean-field or N-N), the
correlations that exist in nuclei can be observed, sometimes as details in the extremes of
distributions, other times as an essential ingredient required to explain gross observations,
such as the a-particle emission in general.

This section is divided into several parts that focus on the near-barrier domain. The
following section addresses N-N dominated reactions. One final comment must be made in
an attempt to be forward looking. While the partition of reactions into low and high energy
(mean-field dominated or not) has been common in the past, future work must move beyond
this mental partition. As mentioned above, due to correlations in the nucleus, the ground state
is replete with high-energy nucleons, well above what would be expected from the Fermi-gas
model. It is actually this aspect, the correlations that exist in nuclei (for example as a function of
n/p asymmetry), that will be the focus of many reaction studies in the future.

3.4.1 Neutron Capture

Recent work at the lowest energies has generated detailed data on (n,x) reactions on nuclei
throughout the periodic table. Due to interest in advanced fuel cycles, as well as for possible
transmutation of reactor waste, the attention has focused on the actinide elements. (All of these
data can be found at the NNDC web site.) © Figure 3.20 shows both fission and capture cross
sections over six orders of magnitude in energy for >**Th. The three regions shown schemat-
ically in © Fig. 3.10 are clearly seen. The central region is dominated by pronounced reso-
nances, bordered on each side by smoothly varying cross sections. The resonances for heavy
nuclei have many-body wave functions, far too complicated to describe. (Only in the lightest
nuclei can these resonances be described by simple single-particle excitations.) At higher
energy, the number of these many-body resonances is so large per unit energy that they overlap
and no experimental resolution would be sufficient to resolve them. At energies lower than the
resonance region, one sees capture into the tail of the lowest-lying resonance, but with
a probability that increases with the increasing de Broglie wavelength of the neutron (with
decreasing energy).

In calculating the capture cross section for the lowest-energy neutrons, it is necessary to
consider the energy level width I'; and the natural lifetime 7; of resonances. The uncertainty
principle gives

I'i=h/z, (3.58)

i.e., short lifetimes correspond to large level widths. For the general reaction A + a — [CN] —
B + b, the resonance cross section is given by the Breit—Wigner form (Breit and Wigner 1936):

it w(I)I, Ty,
E, — B’ + (I'/2)’,

a(a,b) = ( (3.59)
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O Fig. 3.20
The Th n-capture and fission cross sections from 1 eV to 1 MeV (from Aerts 2006)

T Illlllli I lIIlIIlI T IIIIIII| I IIIIII1| Ll IIIIIIII Frrr

[ENNE:

232Th(n,y) with background

Background (unscaled)

—_
(=]
N

TI]III]I

Thorium radioactivity

liJIIIII

T
1

-
o

T 17T ITI

Count rate (dn/dInE/pulse)

_k
T

1 10 102 108 104 10° 108
Neutron energy (eV)

where w(I) is a spin factor, a function of the spin of the CN (many-body) state,

W(I) _ ( 2ICN+1

2+ 1)(2L + 1)’ (3.60)

and I' is the total width composed of the sum of the partial widths I' = 3, I' (the summation
index k includes the exit channel b). E, is the projectile center-of-mass energy and Ej is the
energy of the resonant state.

At very low energies, comparable to the average thermal energy (3/2)ksT ~ 0.025 eV, (n,y)
is the only open channel. Thus the sum above has only one term, corresponding to gamma-ray
emission (b = y). These conditions, plus the realization that the neutron capture rate should
depend on the velocity v (this is basically a detailed balance argument, more neutrons per unit
time will impact the nucleus per unit time at high velocity than low), lead to the following
approximations:

E,=E, =0, sothat E,— Ey~ —E, and

(3.61)
I'n=TIyxwl and I'n=1I,=1T.

Furthermore, E, is a constant close to zero (as the resonance is close to zero energy). Thus
the first term in the denominator is small compared to the second and, aside from terms that
do not depend strongly on energy, the Breit-Wigner formula — © Eq. (3.59) — reduces to
a simple 1/v dependence,

) vl T v, 1
a(n,y) n)tzw(I)( 2 > ~ () o (3.62)

That is, for thermal neutrons, the lower the energy the higher the cross section.
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As the neutron energy increases from thermal to higher energies, the cross section first falls
monotonically according to the 1/v law. In the vicinity of each resonance state, where E, ~ E,
sharp spikes are observed in the cross section. When the state density (levels per unit energy)
times the mean intrinsic width rises to order one, states are no longer resolved. At this point,
the cross section is smoothly varying, of magnitude very roughly equal to the geometric value
0% = nR%.

While the actinide region has achieved much recent attention, (n,y) reactions throughout
the periodic table are important for the analytic tool of neutron activation. Cd is also
important for reactor control as the reaction 113Cd(n,y), with ¢ = 2.0 x 10* b, is used to
control the reactor neutron flux and hence the multiplication factor k in reactor design. The
reaction '**Xe(n,y) with ¢ = 2.6 x 10°b is a prominent fission-product poison that creates
problems in the operation of nuclear reactors by consuming neutrons unproductively.

One of the most important features that can be gleaned from the (n,y) data mentioned
above is the density of states in the excitation energy region near the binding energy of the
neutron. Upon capture, a neutron with thermal energy creates a nucleus with A + 1 nucleons
and E* = By. Collecting data from throughout the periodic table has validated the dependences
expected for the many-body density of states from the Fermi-Gas Model. In this model, which is
also needed to calculate the contribution to the heat capacity of the conduction electrons in
metals (the component that becomes dominant at very low temperatures), the excitation
energy (the thermodynamic internal energy often indicated by U) is proportional to the square
of the temperature. The reason for the square rather than the linear dependence in classical
gases is that not all the nucleons share in the excitation energy. The number of excited nucleons
increases in proportion to T, as does the average energy of each of these (excited) nucleons. The
same explanation holds for conduction electrons in metals at very low T.

E* = aT> (3.63)

As dU =+ SdT — PdVand U = E¥, the entropy is
dE*
S=|—=| =24aT 3.64
(%) =2 (3.64)

and thus, using the Third Law, S = kg In @ (E™), one would expect the density of levels to be
roughly

W (E*) ~ Ce2 T s Ce?ViE (3.65)

Refer to Huizenga and Moretto (1972) for a general discussion of level densities. Note that
the state density w enumerates each projection of the angular momentum while the level
density " does not.

A more careful analysis of a two-component Fermi gas with spin and thermal energy
(U= E* — E,) vields (Bohr and Mottelson 1969)

W (U) = Ce2VaU / U2, (3.66)

In practical usage the constants a and C are empirically-determined. Only experiments at low
E™, like resonance counting, are sensitive to the prefactor C. Experiments in the region of
unresolved states are sensitive only to a relative change in the level density, i.e., "(E* + A)/
™(E*), and thus only the level density parameter a can be extracted. It is the parameter a that
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relates the excitation energy to the nuclear temperature. This parameter is roughly propor-
tional to A but is reduced near closed shells. For near- ground-state nuclei away from closed
shells, the average value is near a ~ (A/8) MeV ™' (© Fig. 3.21).

The mass number dependence is what one would expect from “particle-in-a-box logic,” i.e.,
the larger the box, the greater the number of single-particle levels per unit energy and the
greater the number of ways to distribute particles among these levels with a fixed total available
energy. However, independent-particle models predict that a should be closer to (A/12)
MeV ™', There are both macroscopic and microscopic explanations for this discrepancy.
From a macroscopic view, the nuclear surface, being less dense than the bulk, can accommo-
date more levels per nucleon. (Lower density, larger volume per particle, larger box, higher
density of single-particle states.) This approach was pioneered by Toke and Swiatecki (1981).

These semiclassical formulations for the mass number A and deformation dependence of a
are extensively used in statistical decay models. From the microscopic point of view, the
augmentation of the density of states at low energy is explained as follows. In a single-particle
picture the excitation is “carried” by exciting nucleons to single-particle states (solutions to the
one-body potential problem). However, collective rotational bands can be built on any single-
particle structure (excitation). Although these states are in principle described in the single-
particle picture, they would lie at very high excitation energy in such a model rather than where
they really are — low energy. Thus the enhancement in the level density at low energy — the
a ~ (A/8) MeV ™' — can be viewed as a consequence of collective excitations that in a pure
single-particle picture belong at very high energy. While the relocation of many-body states
from high to low energy greatly increases the " at low energy, it hardly affects the count at high
energy as the number of states increases exponentially.

Thus one would expect a to decrease (w increases, but the rate of increase slows) with
excitation. In the last decade this has been confirmed (Shlomo and Natowitz 1990). Modern
statistical model calculations (see © Sect. 3.5) now employ an excitation-energy-dependent a
that varies from about a = (A/7) MeV ™! at low energy to about a = (A/13) MeV ! by the time
the total excitation energy reaches 100 MeV.

O Fig. 3.21
Level-density parameter a as a function of mass number. The solid line shows an average fit for
a = (A/7.9) MeV~" (from Huizenga and Moretto 1972)
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3.4.2 Nucleon and Heavy-lon Elastic Scattering

3.4.2.1 Nucleon Elastic Scattering

Elastic scattering describes the simplest target-projectile interactions: specifically, those in
which the colliding nuclei experience only an angular deflection, but do not change their Z
or A composition or their energy state (@ Fig. 3.22). For below-barrier projectile energies, the
differential cross section for elastic scattering is governed by the Rutherford (Coulomb)
scattering equation (@ Eq. (3.45)). Rutherford employed this expression to deduce an upper
limit to the size of nuclei and, from the angular distribution, the atomic number of the scatterer
(Rutherford 1911). This same technique is in common use in analytical surface science work
and was notably applied to analyze the elemental composition of lunar samples in situ by
observing the scattering of alpha particles emitted from a radioactive source.

Below the Coulomb barrier only elastic and inelastic excitation by Coulomb excitation are
likely. Moving above the Coulomb barrier, various inelastic reaction channels compete with
each other and with elastic and Coulomb excitation for the partitioning of the income flux.
These channels interfere with one another, as do elastic fluxes from near and far-side scattering.
© Figure 3.23 shows all the existing data for nucleon scattering from Ca isotopes. (Shown are
the differential cross sections and the analyzing powers. The cited reference also contains spin-
rotation data.) Also shown in this figure are the Dispersive Optical Model fits that define the
potential, which in turn define the effective masses and occupancies of single-particle states.

The occupancy of single-particle states was extracted in the 1980s for stable nuclei using
(e,e'p) for several nuclei on the line of beta stability. Much recent effort has been spent in
attempting to do the same for nuclei off the line of stability and thus extract the asymmetry
dependence of spectroscopic factors. Spectroscopic factors expose the deviation from a simple
one-body description of the nuclear quantum problem. For example, if removal of a nucleon,
from a system with A nucleons and associated quantum numbers, leaves the A — 1 system in
the ground state, the spectroscopic factor would be unity. However, as the real A (and A — 1)
systems are strongly correlated, removal of a particle requires a “reorganization” of the others.
The spectroscopic factors can be roughly thought of as the fraction of the wave function (of
valence particles) that can be described by occupancy of a mean-field quantum solution.
Standard shell models predict spectroscopic strength less than one, but such calculations

O Fig. 3.22

Trajectories of projectiles impinging on a target for reactions below the barrier (left), where only
elastic scattering occurs and above the barrier (right), where the more central trajectories are
absorbed. As is seen, nuclear reactions will necessarily decrease the large angle fraction of
elastically scattered projectiles

Below barrier Above barrier
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O Fig. 3.23
World data set (below 200 MeV) of n and p elastic scattering on Ca isotopes along with DOM fits
(From Charity et al. 2007)
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only capture that piece of the correlations contained in the space of the calculation. Particle
correlations (for example multiparticle hole strength required to describe the ground state)
beyond this very limited space would yield spectroscopic strength with even greater reductions
than those predicted by standard shell-model calculations.

Three experimental lines of approach have been used to study the evolution of spectro-
scopic strength with asymmetry: the dispersive optical model, nucleon knockout reactions, and
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O Fig. 3.24
Proton single-particle occupation probabilities in “°Ca (circles), “®Ca (squares), and %°Ca (triangles)
as deduced from a Dispersive Optical Model fit (Charity et al. 2007)
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transfer reactions, the latter two projects using secondary beams. The results from these
experiments are as follows: there is a general trend that the spectroscopic strength decreases
(below the Fermi surface) for the minority (protons in this case) species. That is, for the
analysis of the Ca isotopes presented in @ Fig. 3.23, the proton spectroscopic strength below
the Fermi surface decreases in going from *°Ca to **Ca to ®°Ca (°°Ca being an extrapolation
from the fit), ® Fig. 3.24. This trend is likely the result of increasing p-n correlations mediated
by the tensor force. The same trend is found in nucleon knockout reactions (Gade et al. 2004).
However, here the effect mentioned above is found to be much stronger than that found in the
DOM analysis. An additional difference is that the knockout work implies that this effect is
a function of binding energy (the greater the binding, the greater the correlations), while in the
dispersive optical model, the evolution is more subtle, depending on the parity of the levels (of
both neutrons and protons) engaging in the correlations. For example, in the DOM case, while
the occupancy of single-particle proton states decrease (increase) below (above) the Fermi
surface in going from *°Ca to ®°Ca; there is little change in the neutron occupancy over this
same range of asymmetry. This latter trend, while in contrast to the knockout results, is in
agreement with the transfer studies (Lee et al. 2010). While the elucidation of this trend will be
a major focus of research in the coming decade, the present DOM analysis suggests that
nucleon correlations increase with the number of possible n-p pairs. (That is, protons become
more strongly correlated with increasing neutron number, while neutron correlations do not
increase with increasing neutron number.)

3.4.2.2 Heavy-lon Elastic Scattering

Because of its diffractive nature (@ Fig. 3.25), elastic scattering measurements provide a useful
probe of the nuclear potential near the nuclear surface, thus providing parameters for potential
models such as the optical model. Reaction cross sections for reactions induced by heavy ions
(HI) can also be determined from elastic scattering experiments (see superscript exp in the
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O Fig. 3.25

Left: Elastic scattering angular distribution for '2C + '°0, illustrating Fraunhofer scattering (Hiebert
and Garvey 1964). Right: °0 ions incident on a 2°®Pb target, showing a Fresnel scattering pattern
(Baker and McIntyre 1967). The disappearance of elastic events at large angles is due to the
absorption of lower /-waves
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following equation), since nuclear reactions preferentially remove elastic events at large
scattering angles (low ¢). Consequently, the ratio of the experimental elastic scattering cross
section dop/dQ2 to the Rutherford scattering cross section as a function of angle will decrease
strongly beyond some critical angle 6 ;; ~30° (© Fig. 3.25). The reaction cross section oy can
be estimated from

T s

d exp
or = J dowan 4 J Dd_4g . (3.67)

dQ dQ
()cril ()cril

More precise results can be obtained with diffractive models (Frahn 1978), which
relate (.. to the quarter point (or grazing) angle 0, the angle at which
757(0) /e (0) = 0.25, 0 = ncot(0;/4/2). The adherence of experiment to the Rutherford
values for scattering angles well below 0,,, makes elastic scattering a valuable technique for
cross-section normalizations in heavy-ion reaction studies. The strong Coulomb field for
heavy-ion collisions, proportional to Z,Z;, has important nuclear consequences. Among
these are the Coulomb excitation of deformed nuclei to very high rotational levels and the
fission of heavy nuclei at relativistic projectile energies.

3.4.3 Inelastic Excitation

Inelastic scattering refers to collisions in which there is a change in the energy state(s) of the
target and/or projectile nuclei, but no change in Z and A. Such reactions are useful for
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O Fig. 3.26

Spectrum of protons observed in the 2°Ne(p,p’) reaction. Elastically scattered protons appear in
the 0" peak at 0.0 MeV near channel 1,100. Inelastic events populate the excited states of 2°Ne
(Courtesy of E. J. Stephenson, IUCF)
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investigating both the quantal and collective features of nuclear structure. Studies that employ
(p,p’) and (o,o) reactions are particularly useful for measuring the spins and parities
of particle states in stable nuclei. In © Fig. 3.26 the spectrum of protons observed in the *’Ne
(p>p’)*°Ne reaction is shown as an example.

Coulomb excitation is the process by which nuclear excitation occurs without a hard nuclear
reaction. Basically, the energy for excitation is extracted from the time-varying Coulomb field
as a target and projectile pass one another. This reaction has had a significant rebirth with the
availability of fast (>50 MeV/A) heavy-ion beams. The basic process (@ Fig. 3.27) is strongly
energy-dependent (@ Fig. 3.28) and allows for the extraction of the reduced matrix element for
quadrupole excitation (from the probability of exciting the first 2" state) as well as studying
collective giant resonances. The revival is due to the potential for making these measurements
on fast (off B-stability) secondary radioactive beams (Glasmacher 1998).

In the case of the excitation of the first 2* state of even-even nuclei, in addition to
determination of the energy of this low-lying state, one also measures the reduced matrix
element B(E2) from the yield of y-rays depopulating this state. As the beam energy is increased,
the probability for excitation of large-scale collective motion (giant resonances) increases
(© Fig. 3.28). Fast-beam Coulomb excitation has been a fruitful area of research, because
low-intensity secondary beams can be used since cross sections can be significant fractions
of a barn. The focus here will be on just one of the interesting findings of this productive
research area.

© Figure 3.29 shows the energy of the 2, state for silicon, sulfur, and argon isotopes,
Z = 14, 16, 18, respectively. (The trailing subscript is used to indicate which level of a specific
spin and parity to which one is referring. Thus 0," is the second 0" state in that nucleus.) First,
focus on the behavior at N = 20. The relatively high energy of the 2, " state in Si and S indicates
that N = 20 is in fact magic for the corresponding proton numbers. Shifting the focus to the
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O Fig. 3.27
Schematic picture of the first-order Coulomb excitation of a nucleus from an initial state to a final
bound state and its subsequent y-decay
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O Fig. 3.28

Calculated cross sections for Coulomb excitation of *°S in the first excited state (2*), the giant
dipole resonance (GDR), and the giant quadrupole resonance (GQR) in *°S using a *°S beam
incident on Au, versus the beam energy. The calculation assumes a minimum impact parameter
of 16 fm (From Glasmacher 1998)
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region of N = 28, one finds that the same cannot be said, i.e., N = 28 is seemingly not magic for
these very neutron-rich species. The B(E2) values support this assertion. This loss of
“magicity” to the “South-East” of stability on the chart of the nuclides is called the “island
of inversion.” More generally, it has been appreciated that the values, or strengths, of the
“magic” numbers can change with unusual n/p ratios. This shifting magicity can have universal
consequences. For example, it has been postulated that the inversion region mentioned above
determines the **Ca/**Ca abundance ratio in Nature (Sorlin et al. 1993).

Inelastic excitation via o-particles (i.e., o,0’) has provided the bulk of the data on the highly
collective giant monopole resonance, often called the “breathing mode.” Data of this type
(© Fig. 3.30) have been used to extract the nuclear incompressibility of finite nuclei, and with
the aid of models, the incompressibility of symmetric matter (see © Sect. 3.7).

With greater overlap of the two nuclear potentials, additional channels open up that permit
transfer of one or more nucleons, or direct reactions (Austern 1970). Classic examples of direct
reactions are one-nucleon transfer, or stripping, and pickup reactions. Stripping is the transfer
of a single nucleon from the projectile to the target, for example a (d,p) reaction. Pickup is the
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@ Fig. 3.29

Excitation energies of the first excited 2* states in argon, sulfur, and silicon plotted versus the
neutron number N. Measured values (solid circles) are compared to shell-model calculations with
a full and a truncated set basis states
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reverse reaction, i.e., transfer of a nucleon from target to projectile, as in a (p,d) reaction. At low
beam energies, the higher probability for neutron transfer relative to proton transfer demon-
strates the charge polarizability that the colliding nuclei experience as they approach one
another. This is shown schematically in © Fig. 3.31.

Direct reactions need not be simple one-step processes. The likelihood of a one-step
process improves if the momentum transfer g is close to the angular momentum of the
transferred nucleon divided by the nuclear radius at which the transfer occurs,

7= [Kin — kou| ~ ¢/R. (3.68)

If this matching condition is satisfied, the cross sections can be compared to one-step
reaction models, such as the Distorted-Wave Born Approximation (DWBA), from which
spectroscopic information can be extracted. The common DWBA codes are DWUCK
and PTOLEMY.
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@ Fig. 3.30

Left: Spectra for the giant monopole and isoscalar dipole resonances obtained in (o, ')
measurements and right: The extracted nuclear matter (nm) incompressibility constant K,
(Figure courtesy, P. H. Youngblood, Texas A&M University)
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@ Fig. 3.31

Schematic diagram of a (d,p) transfer reaction. Notice that the deuteron is polarized due to
mutual Coulomb repulsion with the target. For a (p,d) pick-up reaction the arrows should be
reversed

Stripping and pickup studies with heavy radioactive (secondary) beams on light targets are
beginning to provide structure data on nuclei far-removed from stability. Furthermore, since the
(d,p) reaction is the analog of neutron capture (n,y), it provides an important surrogate pathway
for studying nuclear mass buildup in r-process nucleosynthesis (see ® Chap. 12 in Vol. 2).
Using the d(4X,5"'X)p reaction, reverse kinematics reactions with beams of neutron-rich
radioactive nuclei make it possible to study the structure and neutron-capture probabilities of
nuclei nearer the neutron-drip line (neutron separation energy near zero).

A similar tool that is useful for studying mirror nuclei and isobaric analog states is the
charge-transfer reaction of the type (p,n) or (n,p), the nuclear reaction equivalent of beta-decay.
Mirror nuclei are pairs of isobars that can be interconverted by exchanging a neutron and

a proton, e.g., 1°Ng and *O;. An isobaric analog state of nucleus £ ™ Xy is also a state in the
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nucleus for which nucleonic wave functions are the same, as are the masses after correction
for the Coulomb energy and the neutron-proton mass difference. One practical application of
this process has been the measurement of the 3 7Cl(p,n)3 7Ar and 71Ga(p,n)”Ge cross sections
that are related to understanding measurements of the flux of solar neutrinos (Bowles and
Gavron 1993).

Numerous theoretical models have been employed in the analysis of direct reactions at low
energies. Among the most prominent of these is the coupled-channels approach, which
incorporates the quantum structure of the colliding nucleus and its product (Tamura 1965;
Dasso and Landowne 1987). The coupled channels can be either inelastic or transfer modes.
The coupled-channels model has proven to be among the most successful approaches for
obtaining quantitative understanding of direct-reaction probabilities. In addition, it has served
as a valuable guide in the interpretation of subbarrier fusion reactions (Broglia et al. 1983).

In heavy-ion reactions, the more general term quasielastic scattering is frequently applied to
reactions at the nuclear surface. This more inclusive definition covers not only the above
mechanisms, but also multiple-nucleon-transfer reactions. In these events, two or more
nucleons may be transferred, producing a more diverse array of reaction products. The
multiple-nucleon-transfer mechanism can produce nuclei relatively far away from the line of
beta stability. Consider the example,

€470 (8iCa 50 Cu (369)

in which four neutrons are transferred from **Ca to ®*Zn and one proton is transferred in the
reverse direction. While quantum and collective structure effects play an important role in
inelastic scattering and few-nucleon transfer reactions, the primary products may also be
formed with significant excitation energies. If the excitation energy exceeds particle binding
energies, then secondary decay via statistical emission alters the primary exit channel nucleus.

3.4.4 Nucleon Knockout Reactions

Nucleon knockout reactions have also been the focus of considerable recent effort (both
knockout and Coulomb excitation are dealt with in Gade et al. 2004 and Gade and Glasmacher
2008). One famous example of the power of nucleon knockout reactions using secondary
beams is that of ''Li, an extremely neutron-rich nucleus. It is thought to have a neutron halo,
which would explain its large reaction cross section (Tanihata et al. 1985, © Fig. 3.32). With
a half-life of 8.7 ms, ''Li can be produced by fragmentation of a heavier species (usually '*0),
separated in flight from other fragmentation products and made into an almost pure beam.
Directing this beam toward a second target, a secondary reaction measurement can be
performed. Neutron knockout from 11 forms '°Li, which has no bound states so that the
ultimate exit channel is °Li + 2n. Detecting the °Li and a neutron allows for the reconstruction
of the '°Li momentum distribution after the knockout of the first neutron, © Fig. 3.33. If the
target is a spectator, the '’Li momentum distribution is the complement of the momentum
distribution of the removed nucleon. Thus, with the caveats concerning the reaction mecha-
nism, the knockout reaction is a measure of the momentum wave function (as opposed to the
more standard position representation) of one of the loosely bound nucleons. These data
suggest that these valence neutrons are a mixture of 2s,,, and 1p;;, components. Note that
the higher the ¢ value, the broader the (linear) momentum distribution. The admixture of
the second s state might seem surprising, as this level usually does not start filling until N = 14.
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O Fig. 3.32
Schematic view of the ''Li nucleus, in which the two valence neutrons are in orbits much larger

than the °Li core (Tanihata et al. 1985)
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O Fig. 3.33
Left: "°Li residue momentum distributions measured following neutron removal from "'Li on 2C
at 287 MeV/A. Right: Angular correlations of the decay neutrons measured relative to an axis
defined by the "°Li recoil direction as shown in the inset. The points are the experimental

data and the histogram is a reconstruction corrected for experimental resolution and
acceptance effects. Note the strong forward-backward asymmetry, which reflects interference
of the / = 0 and 1 final states
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Its contribution for N = 8 (in 'Li) is thought to be a consequence of the tensor interaction
between neutrons and protons (Myo et al. 2007).

Knockout reactions, such as (p,a), (y,a), and (e,e’at) in even N = Z (alpha particle) nuclei are
also especially important as they provide evidence for alpha particle clustering in nuclei. At low
energies, such reactions, for example, 19F(p,oz) 160 and szi(y,oc)“Mg, which reduce the mass of
the heavy partner, are important competitors to the synthesis pathways leading to the forma-
tion of elements just below *°Fe in nova bursts.

3.4.5 Mean-Field-Dominated HI Reactions

3.4.5.1 Impact Parameter Dictates the Reaction Channel

Nuclear chemists have been particularly active in the study of reactions between heavy
ions (HI) and heavy nuclei. The interest can be traced to the fact that all heavy elements with
Z > 101 have been made with HI fusion—evaporation reactions (Loveland 2007). With
increasing mass, the distinct quantal features become less important. Classical or quasiclassical
reaction models become reasonable when the de Broglie wavelength becomes significantly
smaller than nuclear dimensions. However, this condition is not satisfied in HI reactions with
energies just exceeding the Coulomb barriers. Thus, quantal descriptions via a Time-
Dependent Hartree-Fock (TDHF) approach (Bonche et al. 1976) or some form of quantum
molecular dynamics (Feldmeier and Schnack 2000) are needed. In practice, semiclassical
methods are usually invoked to describe the range of mechanisms observed at bombarding
energies near the Coulomb barrier.

As the energy is increased well above the Coulomb barrier, classical concepts become more
applicable and a partition of the impact-parameter space into different reaction types becomes
reasonable. © Figures 3.34 and © 3.35 illustrate the approximate relationship between reaction
mechanism and impact parameter b, or £-wave, for collisions between two complex nuclei at
energies of more than a few MeV/A above the barrier.

The classification scheme in © Fig. 3.35 becomes simplified for lighter projectiles, for
which fusion and simple surface reactions are the principal exit channels at low relative
bombarding energies. For very heavy projectiles, the damped-collision (deep-inelastic)

O Fig. 3.34
Reaction mechanisms classified schematically according to relative impact parameter b (¢-wave).
Large values of b are classified as peripheral collisions and small values as central collisions

Elastic scattering —— >
Inelastic scattering ——— >
Few nucleon transfer ——>
Damped collisions (DC) —>
Incomplete fusion (ICF) —>
Complete fusion (CF) —>» ---- ---
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O Fig. 3.35

Distribution of partial cross sections o, as a function of angular momentum quantum number /,
decomposed according to reaction mechanism. Left panel is for light-ion-induced reactions (H,
He) and right panel for heavy-ion reactions

«— Elastic scattering «— Elastic and inelastic scattering

Oy

Surface reactions Few nucleon transfer

O Fig. 3.36

lllustration of a damped (deep inelastic) collision. The projectile trajectory is shown by the heavy
curve and the extension of the original Coulomb-scattering trajectory by dashed lines. During the
rotation angle of the dinuclear complex, A = 0| — 0.y, a neck is formed between the reacting
species, through which nucleon exchange and energy dissipation proceed

mechanism is dominant as the mutual Coulomb field between the colliding particles becomes
very large and inhibits fusion.

In the following subsections, the various mechanisms are discussed in order of decreasing
impact parameter, beginning with elastic scattering and finishing with complete fusion.

3.4.5.2 Surface Reactions: Inelastic Scattering and Nucleon Transfer

For impact parameters with trajectories that scatter near the grazing angle, the separation
between the colliding nuclei becomes sufficiently small that they begin to sample the attractive
component of the nuclear potential. Reactions can then occur at the nuclear surface (leading to
two-body final states) that proceed on a time scale comparable to the nuclear transit time.
Interactions in this category usually involve excitation of low-lying modes in one or both of the
colliding species and are particularly valuable for studying nuclear structure. Experimentally,
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reactions at the nuclear surface are distinguished by: (1) angular distributions that peak in the
forward direction or near the grazing angle, and (2) distinct spectral peaks, corresponding to
energy states in the product nuclei.

3.4.5.3 Damped Collisions

At intermediate impact parameters, the nuclear overlap between target and projectile nuclei
becomes sufficiently strong that the nuclear force may compete favorably with the repulsive
Coulomb and centrifugal forces. When these competing forces approximately balance one
another, it is possible to create short-lived dinuclear complexes, or “nuclear molecules”
(© Fig. 3.36). These temporal species survive long enough to undergo a partial rotation and
significant energy dissipation before undergoing binary breakup. Based on this behavior, these
reactions are classified as damped or dissipative collisions, DC. The importance of the damped-
collision mechanism relative to the total reaction cross section depends on the charge product
Z,Z. If the nuclear charge product is small, the DC cross section is also small. For collisions
between very heavy nuclei, damped collisions may consume nearly the entire nuclear reaction
cross section (Schroder and Huizenga 1977; Toke and Schroder 1992). While other processes
become significant with increasing energy, for collisions between the heaviest nuclei, the bulk
of the reaction cross section remains of this dissipative type up to several tens of MeV/A
(Baldwin et al. 1995).

During the contact time, a neck forms between the reacting nuclei, through which
statistical diffusion of neutrons and protons occurs in both directions (Planeta et al. 1990).
It is this nucleon-exchange process that mediates the dissipation of radial kinetic energy into
internal excitation energy. At the same time, extensive nucleon diffusion generates a broad
distribution in both charge and mass around the projectile and target values. Thus the
distinction between damped collisions and fission is that the product charge and mass
distributions are concentrated near those of the projectile and target in the former case, but
which for the latter are symmetric, near the total charge and mass divided by two (for all but
the lowest excitation energies).

The angular and energy-damping features of the damped-collision mechanism are best illus-
trated by means of a Wilczynski plot (Wilczynski et al. 1973), shown in © Fig. 3.37. This type of
plot summarizes the probability for observing a projectile-like fragment in the *°Ar + ***Th
reaction as a function of scattering angle and total kinetic energy. Here the most energetic
nonelastic fragments form a peak near the grazing angle, as mentioned in® Sect. 3.4.5.1. As the
energy damping increases, a ridge of events develops near the grazing angle, corresponding to
quasi-elastic surface reactions. The broad band that appears for the largest kinetic energies
defines the damped collision events. The kinetic energies of the fully damped fragments are
consistent with fission fragment kinetic energy systematics (Viola et al. 1985). However, the
damped-collision angular distribution is peaked near the grazing angle, unlike fission, which is
symmetric about 90° in the center-of-mass system.

Theoretical calculations indicate that the rotation angle A (© Fig. 3.36) depends on the
impact parameter. Smaller impact parameters lead to greater target and projectile overlap and
thus longer rotation times, enhancing the degree of nucleon transfer and energy dissipation.
Analysis of the data suggests that for fully damped events, the rotation time is about 10~ s,
The dissipated energy appears in the product nuclei as excitation energy. The frictional forces
during contact also impart sizeable angular momenta to the primary fragments. These excited,
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O Fig. 3.37

Double-differential cross section (indicated on plot); contours do*/df2 dE for the 10MeV/A and
“OAr + 232Th reaction plotted versus scattering angle and kinetic energy of projectile-like
fragment (Wilczynski et al. 1973). The grazing angle is near 40° in this reaction
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high-spin product nuclei subsequently cool by secondary particle emission to form the
observed fragment Z and A distributions.

Because of the statistical nature of nucleon exchange, the nuclide distribution of the
products extends over a very broad range of projectile-like and target-like fragments.
This has made possible the identification of a large number of exotic nuclei that have
significantly expanded knowledge of nuclear properties. By utilizing similar reactions at higher
projectile energies (@ Fig. 3.38), it becomes possible to create beams of radioactive nuclei for
further exploration of important problems in nuclear reactions, structure, and nuclear
astrophysics.

In order to explain the dissipation of large amounts of relative kinetic energy into internal
excitation and shape degrees of freedom, microscopic transport theories based on statistical
nucleon exchange have proven to be of broadest utility. Based upon a master-equation
approach (Norenberg et al. 1974, 1976; Randrup 1978), the macroscopic variables are
accounted for qualitatively via a Fokker—Planck equation in which a drift coefficient describes
the net flow of nucleons across the target-projectile interface and a diffusion coefficient that
accounts for nuclear friction effects.

3.4.5.4 Composite-Nucleus Formation

Total amalgamation of target and projectile corresponds to complete fusion (CF). If the composite
completely samples the mononuclear phase space, a compound nucleus (CN) is formed.

If the barrier is robust, as it is for HI fusion, Wentzel-Kramers—Brillouin (WKB) logic can
be used to generate the transmission coefficient (Gamow penetration factor) as a function of
the energy of relative motion ¢ (as it is for spontaneous alpha-decay),
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O Fig. 3.38
Distribution of nuclides produced in the 75 MeV/A 78Kr + *®Ni reaction. Atomic number increases

along the vertical axis and mass number along the horizontal axis (From Pfaff et al. 1996)
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Here ¢ is the energy of relative motion. In the first expression, the general WKB result is given in
terms of the real potential V(r) and the classical inner and outer turning points, Ry, and R,y
respectively. The second quantity gives the result if the potential is approximated by an inverted
harmonic-oscillator potential of frequency . Ry is the intranuclear separation distance at the
peak of the barrier.)

From the expression for the transmission coefficient T it is seen that for sufficiently high
angular momenta, the Coulomb plus centrifugal terms may exceed the available beam energy,
leading to an upper limit to the angular momentum, ¢,,,,, that can contribute to fusion (Bass
1974). For slightly higher /-waves this limitation may produce incomplete fusion reactions in
which only a part of the projectile is captured by the target.

For heavy-ion reactions below the average /-value, fusion saturates as the energy is lowered
yielding a transmission coefficient T,and cross section nearly independent of ¢ (Vandenbosch
1992). In this case, the fusion cross section with a center-of-mass energy E, reduces to

2 2
o — RBhweXp [77”(% - E)] (3.71)

2E hw
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This expression, which predicts an asymptotic slope in energy of In[Eo(E)] = 2n/hw,
describes fusion excitation functions at low energy quite well. For deformed nuclei, Ry will
depend on the relative orientation of the colliding pair, resulting in a distribution of effective
fusion barriers. As a result, not only is it possible to observe fusion below the mean fusion
barrier, but it is also possible to obtain information of the effective distribution of barriers
contributing to fusion (Dasgupta et al. 1998). At subbarrier energies, coupling to inelastic
channels can be considered as a “doorway” to fusion and thus coupling of such channels to the
entrance channel can also be an important consideration (Broglia et al. 1983).

In some heavy-ion reactions a small fraction of the projectile mass may escape capture and
proceed forward with the beam momentum. These reactions are called incomplete fusion (ICF)
or massive transfer. The result of such incomplete fusion is, aside from the uncaptured fragment,
an excited nucleus that is fully internally equilibrated and thus its decay is suitably treated by
statistical models of compound nucleus decay, the subject dealt with in the next major section.

A special case of CN formation occurs when the capture proceeds through an isolated
resonance reaction. Such reactions are also of fundamental importance to the nucleosynthesis
pathways that form the elements beyond helium (see® Chap. 12 in Vol. 2). The classic example
here is the 30 — '>C reaction

‘He+*He—®Be; Q= —92 keV (3.72)

8Be+*He—'?C—"2C+7y; Q=7.367 MeV. (3.73)

There are only three levels of '2C below E* = 10 MeV. One of these levels occurs at 7.654
MeV, just above the Q-value for the 8Be(om{) reaction (also a resonance reaction). This level was
predicted by E. Hoyle before it was observed, based on the fact that C (and life) exists. It is the
resonance with this state that magnifies the 3o — '*C cross section and provides the gateway to
synthesis of heavier elements. More detailed discussions of resonance and neutron-capture
reactions in astrophysics can be found in (Rolfs and Rodney 1988).

The two major decay modes of CN are light-particle emission and fission. The modeling of
these decay modes is treated in the next section. In closing this section, it is pointed out that the
spectra of light particles (of energy & and type 7 emitted from a CN P(e;)) is Maxwell-
Boltzmann (like) in form, up-shifted in energy by a Coulomb barrier height (Bc) if the ejectile
is charged,

P(e;) oc g¥ e e B)/T (3.74)
The variable power x on the exponential prefactor (which determines the spectral rise at low
energy) arises from: (a) statistical shape variations which affect the actual barriers, (b) a mixture
of “volume” and “surface” emission, (c) the emission of more complex nuclei that subse-

quently decay into the channel of interest, and (d) quantum penetration. The first factor is the
most important, and thus in fitting spectra, often a distribution of B¢ values is required.

3.5 Statistical Decay

3.5.1 Preliminaries

Standard statistical-model treatments of compound nucleus decay are predicated on a time-
scale separation between the formation of the CN and the time scales for simple (mostly
single-particle) decay modes, as well as the massively collective decay process of fission. With
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this decoupling of the entrance channel from the exit channel (except for conserved quantities),
the CN decays statistically; that is, the decay samples all the phase space allowed by conserva-
tion laws (Ericson et al. 1963). The problem is always the identification and quantification of
this phase space. As almost all reactions proceed through binary or sequences of binary steps,
the rates of decays will be determined by the critical configurations of a binary nature. (The
case of multifragmentation is thought to be an exception to this statement: see the end of this
section and © Sect. 3.7.5.)

There have been two successful approaches to this quantification: the Hauser—Feshbach
(HF) and the transition-state (TS) treatments. The former was historically used to treat light-
particle emission and the latter to treat fission. Modern codes have extended HF to treat
ejectiles as heavy as carbon and with the aid of calculations of conditional barriers, transition-
state theory has been used to treat binary divisions with mass asymmetry in the decay channel
as a continuous variable.

3.5.2 The Hauser-Feshbach Treatment of Particle Emission

The logic employed in the HF treatment (Hauser and Feshbach 1952), as well as the earlier WE
treatment (Weisskopf and Ewing 1940) the which lacks proper consideration of angular
momentum coupling, is that the one-way decay rate would be equal to the reverse rate if
true reactant-product equilibrium were attained. The one way, state-to-state probability for
a fixed ¢-value and energy is readily given by the transmission through the optical model
potential, T(¢). This rate would be equal, by microscopic reversibility (mechanics is time-reversal
invariant), to the outgoing state-to-state probability. Thus an observable rate is simply the
microscopic (state-to-state) rate times the density of final states. The latter reflects the number
of possible final microstates within an experimental window. This window is naturally quantized
by angular momentum and is quantized in energy either by the discrete structure of the quantum
system or, at modest excitation energy, by the number of overlapping states in an energy bite
determined by an experimental energy resolution, i.e., dE, where o is the state density.

While the forward and backward rates would be equal and thus cancel, giving no net rate in
an imagined equilibrium, in the kinetic process the net-rate (unconfined to a box and thus with
no backward rate) is equal to the outgoing one-way rate. Thus the rate of emission of nucleons
or clusters in any specified state from an initial parent level of excitation energy E; and spin J; is
the result of a sum over the product intrinsic state-to-state rates and final-state level densities,
where the sum is over: (a) the possible /-values (inner sum © Eq. (3.76)) and (b) the so called
“channel spin” § = j + s, where j and s are the intrinsic spin of the residual and ejectile spin
(outer sum). With consideration of the possible spin combinations, the HF equation for the
emission rate R; ¢ of a particle of type 7 energy ¢, and separation energy S, in terms of the
inverse cross section o¢_; and the density of levels of the parent; and the daughtery is,

with

) S=j+s (=];+S 2] +1
—ilE, fi) = 1— TT« ) .
7B ) = gj;\ e:%;a ((25 G AL 1)) 0 o7

and



194

Nuclear Reactions

E=E— 5 —¢. (3.77)

In order to execute this logic, the following must be known: (1) the ejectile spin, mass, and
separation energy and (2) the density of levels (as a function of excitation and angular
momentum) of the parent (i) and daughter (f). As the latter has lower mass (and perhaps
charge), as well as excitation energy, its level density will be smaller than that of the parent.

Monte Carlo codes are available that execute this logic event-wise, removing energy in each
step until particle emission can no longer occur. Some codes seamlessly switch to gamma
emission until all products are in their ground states. Since the HF equations treat ejectiles as
objects with only one quantum option (there is no ejectile density of final levels), each level in
a complex ejectile must be treated as a separate channel. Some modern codes (e.g., GEMINI)
have used this logic to treat complex ejectiles (level by level) as heavy as C isotopes (Charity
et al. 2001). Such codes are indispensable for calculating decays initiated by the low-energy
accelerators located in hospitals for isotope production, for evaluating concepts for transmu-
tation of nuclear reactor waste, and as afterburners for treating the statistical decay that
invariably results after fast (nonstatistical) processes originating in high-energy collisions,
including those initiated by cosmic rays.

3.5.3 The Transition-State Treatment of CN Decay

In the 1930s Eyring, Polanyi, and Wigner developed transition state (TS) theory, which is
a computationally efficient way to compute classical reaction rates without integrating trajec-
tories. The main idea is to define a dividing surface that partitions the configuration space into
reactant and product sectors and compute the rate from the directional phase-space flux
through this surface. One complication (below) is that the dividing surface must be such
that it is not recrossed. The transition-state logic was almost immediately applied to fission by
Bohr and Wheeler (1939). (See Vandenbosch and Huizenga (1973) or Wagemans (2000) for
a detailed presentation of fission data and theory.) In this case, the absolute decay width (at an
excitation energy above the ground state E* = E — Vg4 ) comes from an integral over the
density of levels from the point where the energy in the decay channel ¢ is zero (i.e., maximal
energy to be dispersed among the nondecay degrees of freedom and thus maximal level
density) to the maximum channel energy (where there is a minimum of energy in the
coordinates other than the decay channel),

E*—B;

BW __ 1 j L * _
I = <727kam(E*) wg,(E" — B —¢) de. (3.78)

&e=0

The critical aspect in executing the TS logic is consideration of how the density of levels of
the mononuclear (spherical or marginally deformed) parent (w}nn) grows with excitation
energy as compared to growth of the density of levels of the highly deformed saddle-point
shape wst . The logic employed in statistical model codes is to calculate the level-density
parameter via a physical expansion, increasing its value in proportion to the surface area.
Following the prescription of Ignatyuk et al. (1975), Reisdorf (1981), and Toke and Swiatecki
(1982), the level density parameter a (see® Eq. (3.66)) can be written as a physical Liquid Drop
Model-like expansion in terms of a deformation parameter . In such an expansion, one has
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constants for the volume ¢, and surface ¢, contributions, where the latter is multiplied by the
surface area at deformation q relative to that of a sphere (By(q)),

a(q) ~ ¢ + A¥*By(q). (3.79)

The complication that the transition state cannot be recrossed was dealt with theoretically
by Kramers (1940), where the fission width is reduced relative to the Bohr—Wheeler estimate by
saddle recrossing. As the recrossing probability increases with friction, the reduced fission
probability can be cast in terms of the friction coefficient v,

FIf(ram _ |:(1 + yz)l/Z B '}'i| F?W (380)

The importance of this correction is still being debated (McCalla and Lestone 2008).
However, it is included in most modern decay codes.

In the early 1980s data on so-called complex fragment (CF) statistical emission became
available. Complex fragments are usually defined as those with atomic numbers from three to
one half the total mass of the system. The first data, shown in © Fig. 3.39, demonstrated the
statistical nature of the emission and were used to extract conditional barriers; that is, barriers
that correspond to the minimum energy required to pass from the CN system to an exit
channel of fixed mass asymmetry. A general TS theory for treating CF emission was presented
by Moretto (1975). This theory exchanges the problem of calculating transmission coefficients
(needed for HF) with calculating the barrier and density of levels for the conditional barriers,
i.e., barriers with frozen mass asymmetry. As mentioned above, the best modern codes allow
for either scheme to be used.

3.5.4 The Density of States of Highly Excited Nuclei

A complete presentation of the issues related to the properties of what are often called “hot
nuclei” is given in Shlomo and Kolomietz (2004). One of the assumptions underlying both of
the standard treatments is that the reverse process can be considered as capture onto an object
that bears significant resemblance to the ground state of the daughter. The macroscopic
forward (decay rate) is then just the microscopic rate multiplied by the appropriate density
of states. However, at high excitation energy nuclei will expand, with some reduction of the
central density and the surface becoming far more extended. This poses two problems. First,
the OM might not provide correct transmission coefficients, as the excited objects of relevance
have different correlations than those of the ground state. The second problem is that even for
uncorrelated fermion systems, the relevant density of states should be for the extended object.

From a schematic model the qualitative effects of expansion are shown in © Fig. 3.40
(Sobotka et al. 2004). Calculations based on realistic effective Hamiltonians (Samaddar et al.
2007, 2008) yield similar results. With increasing excitation energy per nucleon, the equilibrium
state (which for an isolated system is that with the maximum entropy) is one with reduced
density. This effect increases the level-density parameter (see dotted line in © Fig. 3.40, right
hand side). Many-body theory (Prakash et al. 1983) has provided insight into how the effective
mass terms evolve with density and excitation energy. In a local-density approximation (i.e., the
level density parameter a can be calculated as the sum of contributions from different density
regions of a nucleus), the k-mass (71, see ® Eq. (3.57)) increases from 0.7 to 1 with decreasing
density and the peak of the ®w-mass (m,,), at the nuclear surface is removed with excitation
energy (see © Sect. 3.3.3). The effect of the k-mass is to suppress a at low excitation but to
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O Fig. 3.39

Left: Excitation functions for complex fragment evaporation from a *He-induced reaction
(Mcmahan et al. 1987). Right: Mass distribution generated from the decay of A ~ 110 systems at
both low and high angular momenta. The inset shows the finite-ranged Droplet Model
conditional-barrier distributions (Sobotka et al. 1987)
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increase it with increasing excitation. This evolution provides positive feedback to expansion,
feedback that is active over several MeV/A of excitation. On the other hand, the collapse of the
o-mass at the nuclear surface (which was responsible for increasing a at low excitation) drives a
down over the first few MeV/A of excitation energy. The collective effect is a variation of the
density of states that yields a “Caloric Curve,” E*(T), with a pseudo plateau. While not a phase
transition in the classical sense, these effects represent a transition from a correlated fermion
system to one that more closely resembles a hot, but noninteracting Fermi gas.

3.5.5 Thermodynamic Models for Multifragmentation

Multifragmentation is thought to involve a nearly simultaneous breakup of the nucleus into
many fragments. This image of the process suggests that the relevant phase space is that
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O Fig. 3.40

Left: The mononuclear excess entropy (above that for a nonexpanded system) as a function of
a self-similar expansion coordinate (inverse of scaled radius parameter, i.e., C = 1 no expansion),
for unit (MeV) steps in the excitation energy per nucleon . Right: The level density parameter
with expansion but m"/m = 1 (dotted), considering both expansion and the evolution of mj
(dashed) and expansion with both m, and m,, (solid) are shown (Sobotka et al. 2004)
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corresponding to any number of fragments in the exit channel (rather than just two as in the
HF and TS treatments). Statistical models of this phase space have been generated based on
fixed energy and particle number — microcanonical ensemble, ‘Gross (1990) and Bondorf et al.
(1985); fixed temperature and particle number — canonical, Das et al. (2005), and fixed
temperature and chemical potential — grand-canonical, Randrup and Koonin (1981). As
would be expected, such models predict a liquid—gas phase transition for large, uncharged
nuclear systems, as discussed in ® Sect. 3.7. These models do reproduce a considerable amount
of data. Having done so, it has been the hope that manifestations of the infinite-system phase
transition in a finite system is also represented. To give the flavor of these approaches, the
canonical prescription (for one particle type) is presented here.

The first assumption is that the partition function Q is the product of the individual
partition functions for the component parts, corrected for indistinguishability,

o= Y IT o (M) .

where the sum is over all possible partitions, the product is over the fragments in that partition,
n; is the number of a given fragment type (i) in this partition, g; is internal partition function
for cluster type i, and the factor in parenthesis is the free volume measured in units of the
thermal box size

(3.81)

3
h
A=20 =|——] . 3.82
“1 |:(27ZmT)1/2:| (82)
The average number of clusters of type i is
Viree )QA—i
n;) = H . 3.83
) = (M) % 65:5)

The partition function (for A particles) can be readily calculated from a recursion relation
(Das et al. 2005). The result of particle number conservation in each partition is,
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Qs = Z; k( A, qk) Qa—k- (3.84)

The execution of this logic then comes down to specifying the internal partition function
for each unit q. For nucleons, with no internal degrees of freedom, g = 1 (neglecting spin). For
clusters, qis calculated from the Helmholtz free energy estimated using a liquid-drop model to
calculate the internal energy and the Fermi-gas model to calculate for the entropic contribution
to the Helmholtz free energy E i.e.,

qc = exp[—F/T] = exp[(Wok — o(T)k*? + T?k /&) / T]. (3.85)

W, and g, are constants, while ¢(T) models a surface free energy that goes to zero at a critical
temperature.

This model is logically consistent and when extended to two particle types (for neutrons
and protons, see Das et al. 2005) can reproduce many experimental observables. However, its
main shortcoming is that it neglects interactions between the clusters. This leads to unphysical
effects such as regions of negative heat capacity. This is inconsistent with thermodynamics and
is well known to result from unphysical Hamiltonians. This has been made clear by both
molecular (Lovett 2007) and mock nuclear systems, simulated with Lennard—Jones-type
interactions (Campi et al. 2005). That is, if one considers the interactions that are active at
the inter- (as well as intra-) cluster level, regions of negative heat capacity largely disappear as
long as the system is truly ergodic. The later well-known qualification is demonstrated by the
recent molecular dynamics work of Thirring et al. (2003).

3.6 Mechanisms in the Nucleon-Nucleon Domain

Once the projectile energy significantly exceeds the Coulomb barrier, nucleon-nucleon (N-N)
scattering in the early stages of the target—projectile interaction may generate nucleons or
clusters that are sufficiently energetic to escape the mean field of the composite system. These
fast nonequilibrium processes begin to appear when the projectile energy per nucleon
approaches the Fermi energy ep. In the Fermi Gas Model, the nucleus is treated as
a degenerate gas of spin Y particles confined within the nuclear volume. The Fermi energy
& can be defined as the kinetic energy measured from the bottom of a one-body potential
(a positive quantity) or the binding energy of the last nucleon (a negative quantity). By the
former measure, ¢r is about +30 MeV for both neutrons and protons in nuclei near the valley of
stability. By the latter measure, &r is equal in magnitude to the binding energy but opposite in
sign. Thus, by the latter measure, & = —8 MeV for both neutrons and protons in nuclei near
beta stability but diverge from one another as the neutron/proton asymmetry deviates from
stability, with ultimately the value of the nucleon type in excess decreasing to zero at the drip
line. The kinetic energy view is a very useful concept for many reactions and is used below, but
one has to appreciate that this approach views the nucleus as a collection of independent
particles, i.e., no correlations. (The latter definition is more useful for nuclear structure and
does not suffer from the one-body model assumption.)

Experimentally, nonequilibrium phenomena become apparent above projectile kinetic
energies of about 20 MeV per projectile nucleon, which is comparable to the Fermi energy of
nucleons in the nuclear potential well. These processes grow in both probability and complex-
ity with increasing beam energy (Durand et al. 2001).
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Nonequilibrium phenomena are distinguished by two principal features. First, they occur
on a time scale much shorter than the typical equilibration time for statistical decay of
a compound nucleus (t ~ 107%' s). Second, they produce multiparticle final states that are
subsequently followed by statistical decay of the excited heavy product. In normal kinematics
(Ap < Ay), the energetic light particles or clusters are forward-peaked and form a distinct
exponential tail (area B in® Fig. 3.41) on the Maxwellian spectra produced in later evaporation
stages (area A in © Fig. 3.41). The preequilibrium component for the nucleon channels is as
in by early stage emissions of the multistep compound model, as in by the FKK model for
example. At the extreme of nonequilibrium emissions are the discrete peaks (labeled C), which
correspond to direct reactions, or the first step in a multistep compound model.

The same partition of the cross section seen in the light-particle emission is observed in the
linear momentum transfer (LMT) to the heavy reaction partner, ® Fig. 3.42. The folding angle
between correlated binary fission fragments can be used as a gauge for measuring the degree of
LMT in a reaction with a highly fissionable target, i.e., one for which ox =~ o¢. In this context,
LMT = 1.0 corresponds to a complete fusion (CF) reaction in which the total projectile
momentum is transferred to the composite system, yielding the maximum excitation energy.
LMT = 0.0 (0.orr =~ 180°, © Fig. 3.42) indicates a quasi-elastic mechanism that deposits only
a small amount of momentum and excitation energy in the heavy product nucleus. At low
bombarding energies, most of the reaction cross section goes into complete fusion reactions,
with simple transfer events forming a peak near 180°. With increasing projectile energy, the
high LMT peak broadens and shifts toward lower LMT due to the onset of nonequilibrium
contributions in which incomplete fusion or prompt light particles carry off some of the projectile
momentum, thus decreasing the deposited excitation energy. At the highest bombarding energies,
the LMT distribution becomes nearly flat, indicating the deposition of a continuous spectrum of
excitation energies, but with diminishing probability for complete fusion of target and projectile
as the beam energy increases. Above beam energies of 100 MeV/A, the probability for complete
fusion events is very low.

For nonfissionable systems, similar effects of the increase in nonequilibrium phenomena
with increasing beam energy can be observed by measuring the velocity distribution of heavy
residues relative to the expected velocity for complete fusion events. This approach is especially

@ Fig. 3.41

Kinetic energy spectrum at forward angles for emission of light particles. Region A corresponds to
evaporation from an equilibrated compound nucleus; region B describes preequilibrium
emission, and C indicates the excitation of discrete states in direct reactions
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O Fig. 3.42

Diagram of the evolution of nuclear reaction mechanisms from the mean-field to nucleon-
nucleon regimes as a function of projectile kinetic energy per nucleon E/A, as measured by the
angle between coincident fission fragments ,,,. Correlation angles nearer 180° designate
incomplete momentum transfer. The left frame shows the evolution for a proton-induced
reaction on 23Th; arrows indicate 6., values for CF (Saint-Laurent et al. 1984). For the right-hand
frame, the bar above each plot indicates the LMT scale (1.0 corresponds to CF) for the "N + 238U
reaction. The two peaks correspond to fusion-like and quasi-elastic processes (Tsang et al. 1984;
Fatyga et al. 1985). In all cases, the correlations are broadened by neutron evaporation from the
fission fragments
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useful in reverse-kinematics studies, where the heavy residues have appreciable kinetic energies.
Both the fission-fragment correlations and residue-velocity distributions demonstrate that
energetic collisions produce a wide spectrum of nonequilibrium reaction mechanisms that
vary with the projectile—target composition and bombarding energy.
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The organization of this section proceeds as follows: Relatively simple nonequilibrium
phenomena observed in reactions near the Fermi energy are initially discussed. The subsequent
sections deal with: models designed to account for the complex reactions that occur at
intermediate energies (E/A > 20 MeV), a simplified participant—spectator model to account
for the reaction observables, and finally, reactions at sufficiently high energy to generate
nuclear material with densities significantly in excess of normal nuclear density.

3.6.1 Reactions Near the Fermi Energy

The role of nonequilibrium emission as an intermediate mechanism, linking prompt one-step
reactions to statistical particle evaporation from an equilibrated system, is most transparent in
the proton spectra of light-ion-induced reactions on complex nuclei (Wu et al. 1979). The
exponentially falling, or preequilibrium, component (B) in © Fig. 3.41 can be viewed as arising
from a time-dependent process in which particles are emitted as the energy density in the initial
target—projectile interaction zone randomizes throughout the nuclear volume: the lower the
particle energy, the later in the process the particle was emitted. Two-component fits to the
spectral shapes of components A and B yield slope temperatures consistent with an equili-
brated Fermi gas for the statistical component, but slope temperatures are two-to-four times
higher for the preequilibrium part, indicating emission from an earlier, hotter stage of the
reaction.

Preequilibrium effects also appear in the excitation functions for heavy reaction products
in this energy regime. The product yields shown in® Fig. 3.11 reach their peaks at bombarding
energies consistent with compound nucleus formation; however, all excitation functions have
appreciable cross-section tails that extend to higher bombarding energies. For example, in the
reaction

He+"7Au—""T1 + 3n (3.86)

the yield of '*®T1 (®© Fig. 3.11) persists to much higher energies than predicted by compound
nucleus energetics, because at least one of the emitted neutrons is of preequilibrium origin and
carries off more energy than an evaporated neutron. The lowering of the average excitation
energy due to preequilibrium emission reduces the probability for sequential evaporative
emission and thus serves to hinder attempts to produce nuclei far from stability by increasing
the beam energy.

For bombarding energies well above the barrier, one also observes the preequilibrium
emission of intermediate-mass fragments (2 < Z <~20, or IMFs) in reactions on heavy nuclei.
The reaction observables for IMF emission strongly resemble those for light particles and
presumably occur on a comparable short time scale. Models based upon a coalescence concept
(Bond et al. 1977) have met with some success for light clusters, but encounter more difficulties
for IMFs.

The experimental observables ascribed to the preequilibrium mechanism have usually been
interpreted in the context of the exciton model (Griffin et al. 1966; Blann et al. 1975). In the basic
model, the nucleus is treated as a Fermi gas in which the projectile initiates a series of sequential
N-N collisions, generating unstable particle-hole states, or excitons (exciton = a particle-hole
pair). The number of excitons is thus proportional to the degree of thermalization.

Large exciton numbers imply multiple collisions for which the projectile energy is
partitioned among many nucleons likely to be in bound (single-particle) states, yielding high
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excitation energies. Conversely, when only a few excitons are involved (few collisions), much
larger energy transfers must occur and particles are raised to unbound states that yield
energetic particle emission, leaving the heavy partner in a low state of excitation. Refinements
of the model now include numerous physical effects such as the treatment of the nuclear
potential and N-N mean-free path, Pauli blocking, barrier penetration, and finite-state life-
times (Gadioli and Hodgson 1992; Chadwick and Oblozinsky 1992).

3.6.2 Models of Collision Dynamics

While the exciton model and its derivatives have been relatively successful in describing light-
ion-induced reactions near the Fermi energy, the reaction mechanism becomes more complex
at higher energies or when heavy-ion projectiles are involved. A major complication is
introduced when multiple nonequilibrium processes occur during the evolution from initial
target-projectile contact to the internally equilibrated final state. This problem is frequently
approximated by a two-step model that assumes a fast collision stage followed by statistical
decay of the system at a much later time (t > 10~ 2" 5). The fast stage (time scale T ~ 10~ **s) is
described by models that attempt to account for mass and energy dissipation during the
collision. The second stage is governed by statistical decay mechanisms such as particle
evaporation and fission, as discussed in © Sect. 3.5.

For reactions well above the Fermi energy (E/A > 100 MeV), the intranuclear cascade (INC)
model (Serber 1947) has been frequently employed. For projectiles with de Broglie wavelengths
much smaller than the average internucleon separation distance in the nucleus, all nucleon-
nucleon collisions can be treated as quasi-free N-N scatterings. The projectile is assumed to
follow a semiclassical path and initiate an N-N interaction that generates a cascade of
scatterings in three dimensions. The cascade is computed numerically until all available
projectile energy is dissipated into either fast cascade particles that leave the system or into
internal excitation energy of the target residue. ® Figure 3.43 shows the schematic concept of
the INC model.

The INC model is a phenomenological approach that employs experimental N-N scatter-
ing cross sections and angular distributions as a function of energy up to several GeV. Nuclear
geometry is incorporated to deal with nuclear surface effects for large impact parameters and
a Fermi-gas model with Coulomb barrier effects is used to evaluate the number of fast cascade
particles that escape, as well as those that are thermalized and converted into excitation energy.
Monte Carlo methods are used to select the impact parameter in each event as well as the
scattering angles. For heavy-ion reactions, where multiple primary N-N collisions become
possible in the initial contact stage, account must be taken of the vacancies created by these
collisions. At energies for which meson production and excitation of the intrinsic resonance
states of the nucleon (e.g., A, N* etc.) become possible, the scattering cross section for these
types of reactions must be included, as well as the reabsorption probability of the mesons and
decay of the nucleon excited states. At proton energies of several GeV and above, the growing
number of meson types and resonance states introduces an additional complication, since
there is limited experimental guidance for estimating these scattering cross sections.

INC codes — e.g., ISABEL, Yarif and Fraenkel (1981), and QGSM, Toneev et al. (1990) — are
relatively successful in reproducing the fast cascade component of the reaction observables for
light-ion-induced reactions above 100 MeV. They also predict the qualitative result that a broad
distribution of excitation energies will be produced due to impact-parameter-dependent
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@ Fig. 3.43
Simplified schematic picture of an intranuclear cascade event for an energetic proton incident on
a heavy nucleus. The number of scatterings increases as the impact parameter decreases

n
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transparency effects, with the maximum usually being well below the maximum possible
excitation energy. Quantitative predictions of the excitation energy are more problematical.
This uncertainty stems from the simple approximations relative to the nuclear potential that
became important in terminating the cascade in its latter stages.

For heavy-ion reactions, an additional complication with the INC model is that it ignores
mean-field effects, which become relevant when there is extensive mixing of target and
projectile nucleons. This shortcoming has been addressed via a microscopic theory based on
the Boltzmann—Uehling—Uhlenbeck (BUU) formalism (Bertsch et al. 1984); and variations
(Gregoire et al. 1985). In this formalism, the time evolution of the mean-field is described by
a one-body density-distribution function that is solved simultaneously with a nucleon-nucleon
collision integral, thus accounting for both the mean field and N-N collisions. The collision
integral is calculated via an intranuclear cascade where only scattering into unoccupied phase
space cells is allowed.

Models of this type have proven effective in describing the multiplicities and spectra for
energetic nucleons (Durand et al. 2001), as well as small-angle particle-particle correlations
and integrated spatial distributions (Bauer et al. 1992). In confronting theory with heavy
residue data, BUU-type calculations encounter two principal shortcomings, both of which are
also present in INC calculations: first, the time at which thermalization has been achieved and
second, the lack of density fluctuations in the model that would provide a mechanism for the
formation of nuclear clusters. In an effort to develop a full dynamical theory of fragment
production, density fluctuations have been incorporated via the classical molecular dynamics
(MD) approach (Schlagel and Pandharipande 1987), which has led to several quantal dynami-
cal models (QMD) such as fermionic molecular dynamics (Feldmeier et al. 1995; Feldmeier
and Schnack 2000), antisymmetrized molecular dynamics (Ono and Horiuchi 1996), and
Brownian one-body dynamics (Chomaz et al. 1994).

Both BUU- and QMD-like models can be used to investigate the nuclear equation of state
(EOS) and the phase diagram for nuclear matter shown schematically in © Fig. 3.3. One
parameter of particular concern is the nuclear incompressibility constant K (a subject dealt
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with in the next section). From measurements of spatial flow distributions of emitted light
ions, it has been possible to determine the bombarding energy at which the transition from
the mean-field to nucleon-nucleon scattering dominance occurs; i.e., the “balance energy”
where attractive mean-field scattering becomes equal to repulsive nucleon-nucleon scattering
(Magestro et al. 2000).

The collision models also demonstrate how nuclear reactions can be used to explore
variations from normal nuclear density po, ranging from dilute (p < po) to compressed
(p > po) states, by varying the bombarding energy and target—projectile asymmetry. For
example, proton-induced reactions above about 5 GeV may leave the heavy partner in a state
of depleted density due to the near-instantaneous knockout of several fast cascade particles.
At the other extreme, in symmetric heavy-ion collisions, the large target—projectile overlap
region in central collisions leads to significant compression and high energy density in the early
stages of the reaction.

3.6.3 Participant-Spectator Reactions

For heavy-ion collisions well above the Fermi energy, models predict a low probability for
composite-nucleus formation. Instead, most of the cross section is predicted to go into
reactions that can be generalized as “participant—spectator” reactions (© Fig. 3.44). In the
participant—spectator scenario, the participant source is defined by those nucleons that occupy
the geometrical overlap volume of the target and projectile, which is impact-parameter
dependent.

0 Fig. 3.44

Schematic picture of the participant-spectator model. The hot participant region is formed from
nucleons in the target-projectile overlap region. The target and projectile remnants on the
periphery act as spectators, which then decay statistically

The two nuclei
collide

The hot, dense phase
is formed

The initial phase
cools and condenses
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The number of participant nucleons and the energy-density of this localized source
increase with decreasing impact parameter. The spectators are the target and projectile rem-
nants outside the overlap volume and they decouple from the participant source on a time scale
that decreases with increasing projectile energy and then decay statistically. The excitation
energy of these spectators is a function of the overlap region.

Studies of the projectile spectator, or projectile fragmentation, permit investigation of nuclei
at extremes of temperature and neutron—proton asymmetry (nuclei with large isospin compo-
nents). By employing reverse kinematics, nuclei of all the elements can be studied. Because of
the broad range of impact parameters that contribute to projectile-fragmentation events, the
nuclidic yield distribution is very broad in N and Z, with the resultant formation of product
nuclei far from stability. Exploitation of this result has led to the discovery of many new
neutron- or proton-rich nuclei and provided access to a greatly expanded nuclear landscape for
nuclear structure and nuclear astrophysics studies. One of the more intriguing byproducts of
such studies has been the discovery of “halo nucle” such as élLi (© Fig. 3.32and the discussion
of knockout reactions) in which the nuclear radius is abnormally large, since the highest-lying
pair of neutrons occupies an extended orbit (Hanson et al. 1995; Hanson and Tostevin 2003).

The participant zone constitutes a unique nuclear environment, analogous to a rapidly
evolving plasma decoupled from the nuclear mean field. This zone is the source of energetic
nonequilibrium light particles emitted from the neck region between the two separating
spectator nuclei. Isospin effects in the overlap volume may subsequently modify the isotope
yields. Because of the large multiplicities of particles that may be emitted from both spectator
and participant sources, quantitative understanding of these reactions requires large detector
arrays with excellent charge, mass, and spatial resolution (see ® Chap. 48 in Vol. 5).

The fact that the projectile fragments are emitted with velocities near that of the beam also
has practical consequences. From the detection point of view, the identification of a fragment’s
charge and mass is simplified by the strongly forward-focused kinematics. Projectile fragmen-
tation is also the basis for one of the major radioactive-beam accelerator concepts. By
magnetically separating specific fragmentation products, beams of nuclei far from stability
can now be provided with intensities high enough to perform nuclear reaction and structure
studies. This capability will greatly enhance future efforts to study the effects of neutron—
proton asymmetry on the EOS that are predicted to be significant in several nuclear matter
theories (Baran et al. 1998; Li 1997). Several accelerator facilities currently exist, or are in the
construction/planning stages, for the study of nuclear isospin effects; for example, ATLAS at
Argonne National Laboratory, USA (ATLAS 2010), ISAC at TRIUME, Canada (TRIUMF
2010), CCL at Michigan State University, USA (CCL 2010), SIS at GSI, Germany (GSI
2010), GANIL, France (GANIL 2010), HRIBF at Oak Ridge National Laboratory, USA
(HRIBF 2003), JINR in Dubna, Russia (JINR 2003), RARF at RIKEN, Japan (RIKEN 2010),
Cyclotron Institute at Texas A&M, USA (TAMU 2010) and the recently approved FRIB facility
at Michigan State University, USA (FRIB 2010).

3.6.4 Relativistic Heavy-lon Collisions: Dense Nuclear Matter

In order to investigate the behavior of nuclear matter at still higher temperatures and densities,
it is essential to rely on collisions between heavy ions at relativistic energies (Hermann et al.
1999; Reisdorf and Ritter 1997). At bombarding energies near 1 GeV/A and above, nuclear
matter can be compressed to densities considerably higher than in normal nuclei, perhaps
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approaching the conditions believed to be present when a neutron star is formed in the core of
a collapsing supernova. From event-by-event analysis of the collective trajectories and the
momenta of particles emitted during these collisions (@ Fig. 3.45), vital tests of the nuclear
equation of state can be performed. Two relevant terms often employed in relativistic heavy-ion
research are rapidity and flow.

Rapidity is defined by the expression

1 E .
}’Z—ln< +pc>a
2 \E-—p,c

where p, is the momentum component parallel to the beam and E is the total energy (rest mass
plus kinetic energy). Rapidity, which is a relativistic representation of the velocity parallel to the
beam, provides a variable suitable for discussing the kinematical regions generated in collisions
of relativistic heavy ions.

Depending on the axis of orientation, different types of flow can be defined by addition
of vectors, such as in © Fig. 3.45. Transverse flow (see F in © Fig. 3.46) is a concept used
to examine the emission patterns of spectator nucleons that are emitted transverse to the beam
direction (z-axis in © Fig. 3.45), presumably due to the anomalously large scatterings they
undergo when they interact with the compressed region formed in an event. Target and
projectile matter can be distinguished on the basis of their respective rapidities. The amount

(3.87)

O Fig. 3.45

Schematic view of a relativistic Au + Au collision with impact parameter b = 6.0 fm as a function of
time (increasing from left to right as indicated in the cells of the top panel). The middle frame
represents matter within a density greater than 0.1 po, where p, is the ground-state density of
nuclear matter. Bottom panel shows this projection in the reaction plane (x-z) with respect to the
beam direction z. The top panel shows contours of constant pressure in the transverse plane (x-y)
(From Danielewicz et al. 2002)
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O Fig. 3.46

Transverse flow F as a function of beam energy (left) and zero-temperature EoS for symmetric
nuclear matter (right). Note that the larger the incompressibility coefficient, the larger the
pressure P (From Danielewicz et al. 2002)
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of flow (Danielewicz et al. 2002) is sensitive to the compressibility of the matter modeled by the
transport model. By comparing flow data with the predictions of transport-theory calculations,
it is then possible to evaluate the parameters of the EOS at high density (next section).

Flow can be used as a measure of the properties of the N-N interaction in the high density
overlap volume, as well as evaluating the densities reached in such collisions. Densities up to
plpo =~ 2—4 (Danielewicz et al. 2002) have been estimated from such studies, providing new
insights into the nuclear EOS and the related problem of neutron-star formation in
supernovae. In addition, the spectra observed at bombarding energies above E/A ~ 10 GeV/
nucleon reach spectral temperatures of up to T = 150 MeV. Such temperatures approach the
value for deconfinement into a quark-gluon plasma, a plasma of a type not present since the
primeval conditions of the Big Bang.

In recent years, the focus of this research has been at the Relativistic Heavy-Ion collider at
Brookhaven National Laboratory (RHIC 2005, 2010). One of the most significant findings from
the work at RHIC has been that the quark-gluon plasma generated has an ultralow viscosity-to-
entropy ratio. The low viscosity implies that the degrees of freedom (quarks and gluons) have
short mean-free paths and that the medium itself is still strongly correlated. While this implies
that hydrodynamic reaction-model descriptions are valid, fundamental theory is yet to provide
a clear insight into why the medium is so strongly coupled. Even higher energy work at the
Large Hadron Collider at Conseil Européenne pour la Recherche Nucléaire (LHC, CERN 2010)
will produce still higher temperatures and is likely to shed new light on this question.

3.7 The Nuclear Equation of State

3.7.1 Background and Connection to Classical Thermodynamics

In an introduction to thermodynamics, one studies large systems with the aid of “extensive”
energy functions. These energy functions have two “sectors” for one-component systems, one
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“mechanical” and the other “thermal.” For multicomponent systems another “chemical”
sector must be added. The variables are: P and V (or its inverse, the number density p) for
the “mechanical” sector and S and T for the “thermal” sector. The natural independent variable
for the thermal sector is the entropy S for the pure energy functions while T'is the independent
variable in this sector for the free energies (corresponding to the energy available to do work).
For macroscopic systems S and Vare extensive, while Tand P are intensive, meaning that one
and only one of the variables in each set must be extensive.

Equations of state (EoS) are an attempt to capture the interrelationships between the
variable set of thermodynamics for infinite matter, in the absence of long-range interactions.
Thermodynamics itself is the enterprise of trying to describe matter with the absolute mini-
mum number of macroscopic variables. One deduces the EoS from direct measurement of the
macroscopic variables and from measureable derivatives such as the isothermal and adiabatic
compressibilities for the “mechanical” sector and the constant pressure or volume heat
capacities for the thermal sector.

For finite systems such as nuclei, a surface sector must be added. This sector is not extensive
(i.e., while proportional to the surface area, it is not proportional to the amount of material).
The study of systems where the energy functions are nonextensive has a long history starting
with the work of Gibbs. Both small systems (due to surfaces) and systems with long-range
interactions (where the interaction energy scales with the number of participants squared) fall
into this category. Nuclei suffer from both of these extensivity-destroying features.

Recalling basic (extensive) thermodynamics, the internal energy E of an extensive one-
component system is

dE* = TdS—PdV or de= Tds— Pdv. (3.88)
The lower case is employed in the second version to indicate the energy, entropy, and

volume per particle. The pressure is no more than the dependence of energy on volume or
number density,

@) GG ACE) e

The second equality makes use of the fact that the volume per unit and the number density
are inversely related, v =p~! — dv = —p~2dp. The final equality separates the isoscalar

component of the pressure (the only term present for symmetric matter) from that originating
from neutron/proton asymmetry. At large asymmetries, the second term dwarfs the first, so it is
this term that is principally responsible for resisting the gravitational collapse of a neutron star.

The compressibility is defined as either the negative of the relative change in the volume
with the application of pressure or the relative change in the density with the application of
pressure under specified conditions. (The signs are such as to make the coefficient positive for
any thermodynamically stable system.) Therefore, the adiabatic compressibility (the version
which dictates the speed of sound) is

1/0v 1 /0p
ko= —— (=) == (2£). 3.90
(o) =5 (%) o)
Rather than dealing with k, nuclear science has focused in its inverse, the “incompres-
sibility” coefficient” K. Another minor change is that rather than dealing with a problem that is

intrinsically 3-dimensional, the analysis is reduced to a one-dimensional problem of the
stiffness with respect to harmonic vibrations of a uniform (albeit infinite) sphere of radius R.
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(The conversion to a 1-D problem, with the independent variable being R, makes use of dp/dR
= —3p/R twice, yielding the factor of 9). In this case, from ® Eq. (3.89) one obtains the nuclear
matter (nm) incompressibility K, (with the dimensions of energy):

oP 0%
Kom [MeV] =9 — | =902 (= ) 3.91
[ € } (apz Psat (62p)5’ppm ( )

This is just the inverse of k., with a slightly different coefficient. (Note that 1/p for saturated
nuclear matter is V/A = (4/3)tR*/A = (4/3)r,°n ~ 7.2 fm>/nucleon).

The thermal properties of matter are captured by its ability to absorb energy. The quantum
version of the relevant question is: at a given excitation energy, how many ways can a system
sustain that energy? At constant volume, the energy-dependent answer to this question is
captured in the heat capacity as a function of excitation energy

)= () ~1(Z) —ur(2E) .

The effective mass, introduced in® Sect. 3.3 and discussed more in® Sect. 3.5, is the factor
that corrects a single-particle logic for the many-body correlations. Thus, one can say that the
study of the evolution in the level-density parameter g, is one of determination of how m*
changes with E*. This thermal sector was discussed in © Sect. 3.5.

Description of the properties of matter is punctuated by phase transitions. While formally
such transitions can occur only in the (extensive) matter limit, the manifestations of a matter
phase transition in a finite system can profoundly affect the behavior of a finite “clump” of
matter. In nuclear science, symmetric matter must undergo a liquid-to-gas-like transition as
the matter is heated and the average density reduced, since it has an attractive interaction that
can be saturated at short-range. Just as in the case of standard fluids, there will be a coexistence
region that self-partitions into low- and high-density phases. Just how this transition is
manifest in real charged and finite nuclear (i.e., in the real nonextensive) systems has been
the focus of considerable effort.

3.7.2 The Perspective from Energy-Density-Functional Theory

Extraction of an EoS from a fundamental theory is of course desirable, and while there has been
progress along this line, presently one must work with functionals of relevant properties such as
the density and asymmetry that depend on free parameters that must be determined by some
fitting procedure (Bender et al. 2003).

The task is to generate a functional for the energy of a finite system as a function of density
and other variables that might be relevant. In fact, this procedure just generates a more
rigorous alternative to the Liquid-Drop Model (LDM). This version of developing an expres-
sion for the mass of a drop involves an integral over space. The surface term comes from the
gradients (inspired by van der Waals) and the asymmetry terms by the dependence on both of
the individual densities. The Coulomb term, not included in the expression provided in the
text, comes from an integral over the nuclear volume, the same way as it does in the LDM.

Let the energy as a function of density E(p) be this function, which in the nuclear case must
be a function of the local neutron and proton densities and their derivatives. (Van der Waals
appreciated that nature must “pay” for producing nonuniform densities.) The binding energy
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for a drop must come from an integral of the nuclear energy density ¢, with corrections for
density gradients over the nuclear density,

E= / {é(pmpp) +n(Vp)* + Masym (Vpn — Vpp)z +.. } d*r + Ecoul, (3.93)

where, in this case, the 7s (one isoscalar and one for the asymmetry) are coefficients to be
determined by fitting data in exactly the same fashion as the surface and asymmetry coefficients
are fit in the liquid-drop model.

This approach works well for classical fluids, although its convergence has never been
proved. The connection to infinite uncharged nuclear matter is that the gradient expansion
vanishes and the Coulomb term (which blows up in the infinite limit) is dropped. In that case,
the nuclear energy density £ or the energy per nucleon ¢ (see ® Eq. (3.94)) can be viewed as an
isoscalar part (with only a density dependence) and an asymmetry component with both
a density and an asymmetry dependence as a function of the deviation of the density from
saturation and of the asymmetry from symmetry,

_E_JIEL_
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where (3.94)
&(o, ) =~ [e0(2)] + {8asym(<x,6)} ~ [eo(0)] + {S(oc)éz},
o= Po Py 0= m, (3.95)
Po ’ Pn + pp

The term in square brackets is the energy (per nucleon) of symmetric nuclear matter, while the
term in curly brackets captures the change in the energy with asymmetry. Note that the
coefficient of the asymmetry term is density-dependent.

Development of the first and second terms (isoscalar and isovector, respectively) in
© Eq. 3.94 leads to several other coefficients that in principle can be phenomenologically
determined. As symmetric matter represents an equilibrium point, an expansion in the density
(from the saturation value) cannot have a linear term. The same cannot be said of the
asymmetry term. Therefore, an expansion for both the isoscalar and asymmetry terms can
be written,

K L Kasm
&(a,0) = 50—&—%(&—%)24—,.}+{<SO+§(a—oc0)+ 1; (a_a0)2,,.)52}+...,

(3.96)

where the term in curly parenthesis is the asymmetry contribution is the S(«) in © Eq. 3.94.
The constants in the coefficients are chosen so that the constants (K, L, and K,m,) are
consistent with other formulations (Danielewicz and Lee 2009).

3.7.3 The Incompressibility from the Physical LDM-Like Expansion

The incompressibility can also be expressed in a Liquid-Drop Model-like expansion, that is, an
expansion where the terms are associated with physical corrections, rather than the result of
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a Taylor expansion. Doing so provides an expression for the incompressibility of a finite
charged drop (Youngblood et al. 1999),

ZZ

= (3.97)

2
—-1/3 N-Z

K4 = Kam + KsurtA + Kasym T + Keoul

The first term Ky, is the incompressibility of infinite uncharged nuclear matter (the extensive

quantity), the second corrects the matter incompressibility for the presence of the surface, the

third term corrects for the neutron—proton asymmetry of the matter and the fourth term (one
that blows up for infinite matter) corrects for the charge on the finite drop.

The left-hand side of the physical expansion can be determined from the (mean) energy of

the giant-monopole resonance (GMR), and root-mean-square size of the nuclear drop (ColO
et al. 2004),

Eour = h (3.98)

)
Fitting the physical expansion leads to a value of K, = (240 £ 10) MeV (ColO et al. 2004).

Unfortunately, the GMR data address only tiny variations of the mean density about
saturation. The extrapolation to densities far different than saturation is questionable. To
gain insight into density variations of more relevance to neutron-star structure, HI “flow”
analyses of the type shown in © Fig. 3.45 have been used. The momenta transverse to the beam
(as a function of the beam energy) are shown in © Fig. 3.46 along with a comparison to model
(BUU) simulations. The more incompressible the fluid, the greater the momentum “extruded”
perpendicular to the beam axis. The constraints on the symmetric matter incompressibility are
summarized on the right-hand side of the same figure (Danielewicz et al. 2002). Two state-
ments can be made about the flow results. First, these data are inconsistent with the strongly
repulsive nuclear equations of state derived from relativistic mean field theories and weakly
repulsive equations of state, which would result from a phase transition at densities less than
three times the saturation density. Second, while the uncertainties grow with density, the flow
results are consistent with those from the GMR studies.

It is the asymmetry term that has been the focus of much recent effort, as it is this term
that provides the internal pressure, holding back the gravitational collapse of a (cold) neutron
star. First, results are presented from the perspective of the physical (LDM-like) expansion.
As Kgur is close in magnitude (but opposite in sign) to K, and the Coulomb constant
(—5.2 MeV) is essentially model-independent, for sufficiently heavy isotopes, the difference
Ky — KeowZ2 A~ from © Eq. 3.97 can be approximated by the analytic form y = Kygym, 5 +b,
where § = (N — Z)/A. This approximate relationship has been employed for a series of even-A
Sn isotopes for which the giant monopole resonance (GMR) was excited with inelastic
alpha-particle scattering at small angles (Li et al. 2007). This work (® Fig. 3.47) provided
avalue Kygym = (—550 & 100) MeV. Data on the GMR from isotopes with asymmetries greater
or less than those of the natural Sn isotopes would greatly reduce the uncertainty on Kgyy,. This
will be one of the focus activities at FRIB in the coming decade. Nevertheless, this result is
consistent with the value K,gym = (=500 & 50) MeV obtained from analysis of the isotopic
transport ratios in medium-energy heavy-ion reactions (Li et al. 2008).

Viewed from the energy-density expansion perspective, the analysis described above
will scramble the constant (Sp), linear (L), and quadratic (K,sy,) terms in @ Eq. 3.96. Sepa-
rating the dependences is an active research area, about which several comments can be made.
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O Fig. 3.47

Systematics of the difference Ky — Kcou Z2/A%* in the Sn isotopes as a function of & = (N—2)/A;
Kcou = —5.2 MeV. The solid line represents least-squares quadratic fit to the data (When plotted in
this fashion, the value of K, comes from the curvature of the best fit) (From Li et al. 2007)
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First, there is a cross-correlation (shown in ®© Fig. 3.48) between the constant term (Sp) and the
linear term (L) (Tsang et al. 2009). Second, an overall constraint on the density dependence of
the asymmetry energy is deduced from HI-reaction data (Danielewicz and Lee 2009; Shetty
et al. 2007),

2
S(p) x p*(1 + cp); 3 sx<1. (3.99)

Again, in an effort to be forward looking, experiments on parity-violating electron scat-
tering on *°*Pb (a project called PREX) will be done in the next few years. If successful, this
experiment will produce data directly sensitive to the linear term in the dependence of the
asymmetry energy on density (Horowitz and Piekarewicz 2002).

3.7.4 Cluster Formation at Very Low Density

At very low density and temperature, alpha clusters become a significant component of
symmetric nuclear matter (Friedman and Pandharipande 1981). The contribution of such
clusters is determined by an interplay between the translational phase space (which favors free
nucleons with increasing temperature) and binding energy (which favors alpha-particle for-
mation by allowing more energy to be available for translation). One only needs to consider
alpha decay of heavy nuclei to appreciate that clustering in the matter tails of heavy (cold)
nuclei is significant. As is the case in water, one can consider such clusters as transitory, an
existence that increases as the density and temperature decrease.

There have been significant advances on both the theoretical and experimental fronts in
elucidating the behavior of nuclear material at very low densities, densities less than 0.1 of
saturation. On the theoretical front, a virial (density expansion) EoS has been formulated by
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B Fig. 3.48

Representation of the constraints on parameters Sp and L in © Eq. 3.96. The right axis corresponds
to the neutron-matter-symmetry pressure at saturation density. The region bounded by the
diagonal lines represents the constraints obtained from analysis of HI collisions. The vertical lines
near So = 31 MeV are obtained from LDM-like analyses (i.e., masses). The lower and upper boxes
are formed by the constraints from the so-called Pigmy Dipole resonances (neutron-rich skin vs.
core) and from symmetry-energy analysis on nuclei, respectively. The inset shows the density
dependence of the symmetry energy in the shaded region. The symbol in the inset represents the
GDR. Note the greatly offset scales on the abscissa and ordinate (From Tsang et al. 2009)
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explicitly considering the (N-N), N-alpha and alpha-alpha scattering phase shifts (Horowitz
and Schwenk 2006). One of the values of this work has been to quantify the pressure reduction
and asymmetry energy enhancement (relative to a nucleon gas), due to alpha-particle cluster-
ing. Confirmation of this enhancement at densities of 0.01-0.05 times the ground-state density
of symmetric nuclear matter has been observed in an analysis of HI reaction data (Kowalski
et al. 2007, Natowitz et al. 2010). This limiting behavior is one aspect of clustering in nuclear
systems. The next section deals with perhaps the most significant aspect of this behavior.

3.7.5 Multifragmentation: The Low-Density Regime and the
Manifestation of the Liquid—Gas Phase Transition in Nuclear
Collisions

When the first high-energy accelerators became available in the 1950s, radiochemical and
emulsion studies indicated the existence of a reaction mechanism in which a heavy nucleus is
disintegrated into multiple neutrons, H and He ions, and IMFs (© Fig. 3.1), a process now
called multifragmentation (Lynch 1987; Trautmann 2001; Chomaz 2001). The connection of
this phenomenon to the nuclear liquid—gas phase transition in matter was made after con-
struction of a “caloric curve,” i.e., T(E*), shown in © Fig. 3.49 (Pochodzalla et al. 1995). The
ordinate was constructed using isotope ratio “thermometers.” Such thermometers use the
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O Fig. 3.49

Caloric curve (temperature vs. heat) derived from peripheral collisions in '*’Au + '°’Au reactions.
Temperatures are derived from yield ratios of *He/*He and °Li/’Li isotopes and heat (E'/A) from
event-by-event calorimetry. The solid line describes the expected behavior for nuclear
evaporation. The dashed line is that expected for a hot nuclear gas. The plateau region in
between has been interpreted as evidence for a “boiling-like” phase transition in nuclei
(Pochodzalla et al. 1995)
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difference in the ground-state masses of different isotopes in a Boltzmann expression for the
relative yield of the isotopes (Albergo 1985). The experimental isotope ratios are fit by
adjusting the temperature.

The only way to have a halt in the increase in T with increasing E* is for additional degrees
of freedom to become available. In the case of the macroscopic liquid—gas transition, it is the
access to the full 3-D translational degrees of freedom that halts the increase in the average
energy in any one degree of freedom (as energy is poured into the newly accessed ones.)

The observables in high-energy light-ion or intermediate-energy HI collisions all relate to
the above-mentioned multifragmentation exit channel. In order to create multifragmentation
events, it is necessary to deposit excitation energies in a nucleus in excess of E*/A ~ 4-5 MeV,
i.e., about 1 GeV in a heavy nucleus. Transport codes predict that such events are rare,
comprising less than ~5% of the nuclear reaction cross section. Among the methods used to
prepare such systems have been light-ion reactions (ISiS, FASA), reverse-kinematics reactions
(EOS), peripheral reactions (ALADIN), and near-symmetric heavy-ion (A + A) reactions
(INDRA, ALADIN and Miniball). The various detector systems (given in square brackets)
and earlier devices are referred to in Durand et al. (2001).

The plateau in the caloric curve is only indicative of access to additional degrees of freedom,
not necessarily access to prompt multifragment decay. For example, expansion or greatly
increasing the surface diffuseness, or an increase in the level-density parameter all would
decrease the rate of increase of T with E*, as discussed in © Sect. 3.5. However, numerous
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observables do in fact indicate that multifragmentation is the result of a near-instantaneous
phenomenon rather than the result of sequential binary decays. Among these observables are
evidence for a breakup density of only 20-30% of normal nuclear density (p/po ~ 0.2-0.3),
compression—decompression effects in A + A reactions, and most important, time-scale
measurements based on spatial correlations among the clusters. The latter work demonstrates
that the breakup time scale is nearly simultaneous (t ~ 10~ s), much shorter than expected
for a drawn-out sequential evaporative sequence (see ® Fig. 3.50 and Viola et al. 2006).

Nuclear models based upon both statistical concepts and those for a generalized liquid—gas
phase transition dependent on fragment size distribution are in general accord with the phase
transition interpretation as long as the models assume expansion to a given breakup volume. In
these models, the decay can be that expected from a statistical sampling of the cluster phase
space (Bondorf et al. 1985; Gross 1990; Das et al. 2005), that is, without any dynamics, or
a time-dependent approach in which emission occurs as the system expands to the breakup
volume (Friedman 1990). However, it must be mentioned that as recent fragment-fragment
correlation data could not be reproduced by prompt fragmentation models, Gentil et al.
(2008), the interpretation of these complex decays is still not fully understood.

@ Fig. 3.50

Top: Evolution of a multifragmentation reaction as a function of heat £"/A for the number of Z > 3
fragments (probability P(Ny,¢), IMF multiplicity N;.s). Bottom: Breakup time 7 in fm/c (1 fm/c
=3.3 x 107%*5). The growing multiplicity and rapid decrease in the breakup time are consistent
with a “boiling-like” phase transition in nuclei (Beaulieu et al. 2000)
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Analyses based on the finite-scaling model proposed by Fisher for classical drops (Elliott
et al. 2002), percolation theory (Bauer et al. 1992), and a statistical multifragmentation model
(Botvina et al. 1999) show generally good agreement with the concept that the transition (halt
in the increase in the T with E*) is associated with accessing the multifragment phase space.
The opening of this most complex decay channel in finite nuclei at T ~ 4-6 MeV implies that
infinite, uncharged matter cannot exist above T =~ 17 MeV (Natowitz et al. 2002).

Perhaps, the most insightful result employing the fragmentation data comes from
employing Fisher’s model (Elliott et al. 2002). The critical exponents associated with the
transition that occurs in the finite system’s analog to the infinite matter liquid—gas phase
transition are extracted. In addition, using the ubiquitous coexistence behavior for classical
fluids, the nuclear phase transition data were added to what are known as “Guggenheim plots”
(T/ Tyiq vs. both the low and high reduced densities p,/p.ir and py/perir). However, it should be
kept in mind that unlike the macroscopic cases employed by Guggenheim and others to prove
reducibility, actual measurements of the two coexisting densities as a function of temperature is
not done. Nevertheless, this work shows how nature’s systems, while seeming quite different,
are often interrelated. The careful reader would have noted a few such cases of this unity of
natural systems in this chapter.

3.8 Addendum: Cross-Section Calculations

For the case of a beam of charged particles incident on a thin target of thickness x, as illustrated
in® Fig. 3.51, the projectile flux can be expressed as 1, = I/(ge). Here Iis the electric current in
amperes, as measured in a Faraday cup that collects the total charge deposited by projectiles of
charge ge. For light ions, the projectile ion is usually fully stripped of its atomic electrons so that
q= Z, the atomic number of the ion. However, for very low energy or very heavy ions, complete
stripping of the atomic electrons may not occur, so that the ionic state of the projectile must be
accounted for. The number density of target atoms #; is given by

ne = (pw/M)Ny, (3.100)

where py; is the mass density, M is the molar mass of the target atoms, and N, is Avogadro’s
number (6.022 x 10* mol™1). For reactions induced by a beam of particles (two dimensional
geometry), the surface number density of target nuclei (N,/area) is the relevant target collision
factor, assuming that the beam cross section is smaller than the target area. For a given
thickness x the surface number density (usually measured in cm ™) is

Ni/S = mx. (3.101)

where S is the surface area of the target.
With these definitions the production rate R(a,k) for a given exit channel k becomes

R(a, k) = nynexo(a, k). (3.102)

where the quantities are most commonly given in the following units: R (s '), n, (s,
n, (cm ), x (cm), and ¢ (cm?). For thick targets the above linear behavior does not hold
anymore. However, an arbitrarily thick sample can be viewed as being composed of thin slices
of thickness dx. The rate of product nucleus formation is then given by the rate of particle
removal from the beam as it passes through the slice of the target of thickness dx,
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@ Fig. 3.51
Beam of projectile nuclei impinging on a circular disk of thickness x

— X -
—dn, = nymo(a, k)dx. (3.103)
Here ¢ (a,k) stands for the total cross section. Integration over the thickness x of the target gives
f x
dny

- [ —== ont/dx, (3.104)
1p
i 0
where i (initial) and f (final) are to indicate the particle flux entering and leaving the target,
respectively, and

np(£)
= - . 3.105
y (1) eXp( nto’x) ( )
The production rate then becomes
R = ny(i) — np(f) = n,(i)[1 — exp(—mox)]. (3.106)

If ¢ is the total reaction cross section, this expression predicts the attenuation of the beam
due to all nuclear reactions in a target of thickness x. This expression assumes that the beam
intensity and cross section are constants. In reality, this is not necessarily the case and
corrections may be required due to time variations in the projectile current and dependence
of the cross section on beam energy (© Fig. 3.51).

For an infinitely thin target, that is, one in which there is no appreciable attenuation of the
beam due to target thickness, the above expression can be simplified by expanding the
exponential term, exp(—mo x) &~ 1 — mo x. This leads to a commonly-used expression for
the rate

R(a,b) = %o(a, b) % (3.107)

where S is the area of the target containing N, atoms of weight w and N, = (Ww/M)N,. The
surface number density (measured, for example, in atoms cm %) — or its alternative, the surface
density (given, for instance, in g cm™2), to which it is proportional — is ordinarily a more
accurate and easily determined quantity for thin targets than is the actual thickness. The basic
assumption here is that the beam diameter is smaller than that of the target.
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In the geometry of a nuclear reactor, the target can be considered to be immersed in
a neutron gas, so that all target atoms N, are exposed to the flux of neutrons. In such cases,
target thickness usually does not matter and one can write

R=o0(a,b)Ni¢, (3.108)

where ¢ is the neutron flux (which is usually given in neutrons cm ™ * s~ '), a parameter of the
reactor and the position of the irradiation within it. The same is true for reactions in stars,
except that this expression must be modified for the flux of both reactants.

Finally, in the production of radionuclides, it is necessary to include the effects of radio-
active decay during bombardment in the rate equation as discussed in ® Chap. 7 of this
volume. The net production rate (dN/dt) will be the difference between the production (R)
and decay (AN) rates

dN/dt = R— iN. (3.109)
The solution to this differential equation gives the number of atoms N produced as
a function of time,

N=(1/2)R(1—e™), (3.110)

where A is the decay constant of a given radioactive product nucleus and ¢ is the bombardment
time. The factor (1 — e *) is called the saturation factor. This factor is an important
consideration in production of short-lived medical radionuclides for diagnosis and therapy,
and for efficient use of accelerator or reactor time. For bombardment times greater than one
half-life, this factor illustrates the law of diminishing returns; i.e., half the maximum activity is
formed after one half-life, 3/4 after two half-lives, etc.

3.9 Selected Nuclear Reaction Web Resources

Argonne Tandem Linac Accelerator System (ATLAS), http://www.phy.anl.gov/atlas
Australian National University Tandem, Canberra, http://www.rsphysse.anu.edu.au/nuclear
Bhabha Atomic Research Center, http://www.dae.gov.in/res.htm

Canada’s National Laboratory for Particle and Nuclear Physics (TRIUMF), http://www.triumf.ca
Centre Européenne pour la Rechérche Nucléaire (CERN), http://public.web.cern.ch

China Institute of Atomic Energy, Beijing, http://www.nti.org/db/china/ciae.htm

Chinese Academy of Sciences, Lanzhou, http://english.imp.cas.cn/

Coupled Cyclotron Laboratory, Michigan State University, http://www.nscl.msu.edu
Cyclotron Research Center at Louvain, http://www.cyc.ucl.ac.be

Facility for Rare Isotope Beams (FRIB), http://www.frib.msu.edu/

Fermi National Accelerator Laboratory (FNAL), http://www.fnal.gov

Gesellschaft fiir Schwerionenforschung (GSI), http://www.gsi.de

Grand Accelerateur des Ions Lourds (GANIL), http://www.ganil.fr/

Holifield Radioactive Ion Beam Facility (HRIBF), http://www.phy.ornl.gov/hribf/hribf html
Institute for Nuclear Physics, Jilich (COSY), http://www.fz-juelich.de

Joint Institute for Nuclear Research (JINF), http://www.jinr.dubna.su

Kernphysich Versneller Instituut (KVI), Groningen, http://www.kvi.nl

Laboratory National Legnaro (LNL), http://www.InLinfn.it

Laboratory of Nuclear Science, Catania, http://www.ct.infn.it

Lawrence Berkeley Laboratory, http://www.lbl.gov
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Lawrence Livermore National Laboratory, http://www.lInl.gov

Los Alamos National Laboratory, http://www.lanl.gov

Los Alamos Print Archives (LANL), http://lib-www.lanl.gov/

National Nuclear Data Center, NNDC (BNL), http://www.nndc.bnl.gov/
Pacific Northwest National Laboratory, http://www.pnl.gov

Relativistic Heavy-Ion Collider (RHIC), http://www.bnl.gov/RHIC
Research Reactors Database, http://www.iaea.or.at/worldatom/rrdb/
RIKEN Accelerator Research Facility (RIKEN), http://www.rarf.riken.go.jp
The Svedberg Laboratory (TSL), http://www.tsL.uu.se

The Texas A&M Cyclotron Institute, http://cyclotron.tamu.edu
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