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Abstract: The investigation and application of nuclear reactions play a prominent role in

modern nuclear chemistry research. After a discussion of basic principles and reaction

probabilities that govern collisions between nuclei, an overview of reaction theory is presented

and the various reaction mechanisms that occur from low to high energies are examined. The

presentation strives to provide links to more standard chemical disciplines as well as to nuclear

structure.

3.1 Introduction

Current understanding of nuclear reactions has been significantly expanded by developments

in accelerator technology, which now provide nuclear science with a highly diverse arsenal of

nuclear projectiles. It is possible to probe the nucleus with beams of photons, electrons,

mesons, neutrons, antiprotons, and virtually all naturally occurring isotopes of elements

ranging from hydrogen to uranium. In addition, there is a growing capability to accelerate

radioactive nuclei off the line of beta stability.
This arsenal of tools has allowed the response of nuclei to excitation energy, angular

momentum, and neutron/proton asymmetry to be studied. Excitation energies from the

smallest allowed (excitation to the first allowed quantum state above the ground state) to

that corresponding to the capture of a thermal neutron (one binding energy BN), to that

required to totally vaporize a nucleus with A nucleons (> Fig. 3.1), an excitation energy of the

order of ABN, have all been investigated. The study of highly excited nuclei has provided new

insights into nuclear systems with bulk densities both higher and lower than the central density

. Fig. 3.1

Reconstruction of a highly energetic nuclear collision that disintegrates a gold nucleus into

multiple nucleons and light clusters
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of ground-state nuclei, densities which nature readily accesses in astrophysical objects. Simi-

larly, the nuclear response to angular momentum from zero to that which prompts nuclei to

fission (no matter what position in the periodic table) has been examined. Most recently, the

use of secondary beams for reaction studies has allowed the study of nuclei formed in nature

during nucleosynthesis of the elements – nuclei that previously had been inaccessible to

experiment.

From a broader perspective, progress in related fields of nuclear science has frequently
evolved from nuclear reaction studies, as indicated schematically in> Fig. 3.2. Reaction studies

provide pathways for exploring nuclear structure, the formation of both new elements as well

as isotopes of known elements (Loveland 2007), and nuclear astrophysics. At themore practical

level, important nuclear applications have resulted from reaction studies, for example, nuclear

energy, nuclear medicine (both for diagnostic imaging and therapy), activation analysis, and

space-radiation effects due to cosmic-ray exposure.

The vantage point that will be maintained for the bulk of this chapter is that the atomic

nucleus can be viewed as a two-component quantum fluid, i.e., the degrees of freedom are
those associated with nucleons. Despite the quantum nature of the systems, classical analogs

can be of great heuristic value. Leading this list of analogs is that of a charged two-component

liquid drop. Here, the quantum aspects are buried in a few well-chosen coefficients of a physical

expansion.

The Fermi-Gas Model applies a thin veneer of quantum mechanics to the Liquid-Drop

Model (LDM), i.e., the Pauli exclusion principle must be obeyed by the spin ½ nucleons and

thus neutrons and protons must occupy distinct quantum levels. The energy of the top-most

occupied level in this simple picture is called the Fermi energy, EF. There is a Fermi energy for
neutrons and another for protons, each corresponding to a chemical potential, i.e., the energy

associated with the addition or subtraction of a nucleon. The kinetic energies of the nucleons

forced by the Pauli principle lead to an internal pressure (intimately related to that which holds

up a neutron star against gravitational collapse), but, as the surface of a stable nucleus is

stationary, the pressure must return to zero at the periphery (just as it must on the surface of

a neutron star or any other self-bound stable object.)

. Fig. 3.2

Schematic representation of nuclear reactions as applied to other areas of science and

technology
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At the next higher level of sophistication, a specific quantization is envisioned by imagining

independent particles in a (real) central potential. The consequences of this confinement are

the granularization of the single-particle states labeled by orbital angular momentum (‘) and
its orientation relative to the nucleon’s spin (s). The quantum state of the nucleon, either in the

entrance or exit channel, can dictate which nuclear reaction channel dominates. Turned

around, studying reactions can provide insight into the underlying nuclear structure of the

reactants or products.

Beyond the view of nuclei as nucleons moving independently in a mean field, one
appreciates that the constituents are often engaged in complex correlations. This is akin to

what one finds in water, where correlations (induced by hydrogen bonding) must be under-

stood. However, unlike systems such as water, in which the correlations between identical units

determine the interesting material properties, the nuclear system is composed of two distin-

guishable components.

In-medium correlations have many observable effects. They influence the mass of nuclei and

if one were to create a one-body potential to mock up their effects, it would cause clustering of

levels around the Fermi surface. This, in turn, changes the density ofmany-body stateso(E!); the
number of ways nucleons can distribute themselves into the allowed single-particle states

within an excitation energy window. The density of states is Boltzmann’s wahrscheinlichkeit

in the expression S(E!) = kB ln o(E!). For all but the lightest nuclei, the state density forms

a quasi continuum as long as the excitation energy E! is greater than the binding energy of

a nucleon. This ‘‘high level density’’ allows for statistical treatments of reactions, in which it is

the value ofo(E!) associated with a given decay path that controls the probability of that decay.

Not surprisingly, the entropy (the measure of the density of states that is extensive in

macroscopic systems) and the temperature (the inverse of the rate of increase of the extensive
measure of the density of states, i.e., S, with excitation energy) turn out to be useful concepts in

explaining the competition between decay channels of an excited compound nucleus, includ-

ing the fission channel(s), by making use of transition-state theory. This theory was developed

by a collaboration between Ewing and Wigner in the 1930s. It is perhaps only from the unique

perspective of the nuclear chemist that the utility of this theory to treat both chemical and

nuclear reaction rates can be appreciated.

These correlated many-body systems can also be viewed as isolated drops of matter, which,

if uncharged, could be infinite. Reaction studies have been called upon to explore the equation
of state (EoS) of nuclear matter and to extract any phase transitions that punctuate the phase

diagram (> Fig. 3.3). An equation of state is humankind’s attempt to interrelate the variable set

of thermodynamics, the absolute minimum set required to describe the macroscopic state of

a system. Nuclei, being two-component systems, have a ‘‘chemical composition’’ sector (with

chemical potentials and numbers of each as the variables, with one or the other chosen as

independent), as well as a ‘‘mechanical’’ sector (P,V ) and a ‘‘thermal’’ sector (T,S). Reaction

data have been able to place rather tight constraints on the incompressibility of symmetric

nuclear matter.
The isothermal incompressibility (the inverse of the compressibility) of an ideal gas is

K=" (V)(dP/dV)T= P. It is the equivalent science (although general interest is in the adiabatic

compressibility) for nuclear systems that is sought. Insight into how this incompressibility

changes with neutron–proton asymmetry is just now becoming available. It is this part of the

EoS that dictates the behavior of supernovae, the events leading to neutron star formation, and

the structure of such stars.
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Phase transitions are the delimiting punctuation of the EoS of any matter. One of the great

successes of recent nuclear reaction studies has been to elucidate this punctuation, in partic-

ular, the nuclear analog of a liquid–gas phase transition (> Fig. 3.3).

As mentioned above, the perspective of this chapter is that of a nuclear system composed of

neutrons and protons. The subnuclear aspects of the field are not addressed, for example, the

origin of the nucleon-nucleon force and spin, quark-gluon degrees of freedom, and weak-
interaction physics. For an overview of these subjects, see (NRC 1999).

3.2 Basic Concepts

In simplest terms, a nuclear reaction can be defined as a binary collision that alters the nucleon-

nucleon associations, just as a chemical reaction is one that alters atom-atom associations. This

change in association can produce different nuclei (via the exchange of nucleons or fusion) or
can simply excite the nuclei (different correlations within the nucleus that no longer corre-

spond to the ground state.) The latter type of reaction is called inelastic excitation. The former

type might, or might not, proceed through an intermediate.

The case in which an intermediate state is formed can be written as

aþ A ! C" ! bþ B; ð3:1Þ

where the reactants A and a are the target and projectile that form an excited intermediate

species C∗, or composite nucleus. The intermediate usually decays into a binary exit channel

indicated by the product nuclei b and B. If the reaction loses all recollection of the entrance

channel aside from quantities fixed by conservation laws (energy and angular momentum), the

. Fig. 3.3

The nuclear temperature–density phase diagram, indicating the nuclear landscape now available

for reaction studies. The dotted trajectory shows the stepwise evolution of an energetic nuclear

collision, in steps of about 1 % 10223 s (Adapted from Mueller and Serot 1995)
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intermediate composite is called a compound nucleus (CN), (> Fig. 3.4). In this case, exit-

channel products are formed via statistical decay on a time scale longer than !10"21 s, a time

commensurate with those that characterize either collective nuclear motion (rotation or

vibration) or nucleon transit across a nucleus. At the other extreme, direct reactions occur on

a much shorter time scale (!10"23 s), effectively bypassing the composite nucleus state. In

reality, there is a continuum of time-dependent processes between compound and direct

reactions. Intellectually, this continuum of mechanisms can be organized as viewing each

step proceeding toward a CN as a fixed ‘‘generation’’ of nucleon-nucleon collisions. In a simple
direct reaction the final state – right-hand side of > Eq. (3.1) – is reached in the first step.

Several steps are required to dissipate entrance channel energy and disperse it statistically

among all the nucleon degrees of freedom. In the language of statistical mechanics, the CN is

the case where the allowed phase space (that piece of the many-body 6N dimensional phase

space allowed by conservation laws) has been fully sampled. The kinetic process by which this

happens, organized by collision generation, is called the Multistep CompoundModel, a model

developed by Feshbach, Kerman, and Koonin (Feshbach et al. 1980), and often called FKK for

short. The FKK codes commonly in use today are: EMPIRE, TALYS, and GNASH, which can be
found on the Web.

In principle, the products of a nuclear reaction can be any species permitted by conserva-

tion laws. In practice, direct reaction final channels will be strong if they possess substantial

overlap with those of the initial state. Similarly, if the reaction proceeds all the way to a CN,

strong channels will be those that capture large portions of the available phase space. Com-

pound nucleus wave functions are intractable objects. This, coupled with the myriad of equally

complex final states, allows a statistical analysis to be employed. Even so, the full 6N dimen-

sional phase space is far too large to cope with and so insight must be used to calculate the
phase space area of relevant parts (e.g., the part of phase space well described by two large

clumps of matter, rather than one, will be proportional to the fission yield.)

3.2.1 Shorthand Notation for Nuclear Reactions

The following shorthand notation is frequently employed:

target ðprojectile; light productsÞ heavy products; or
Aða; bÞB:

. Fig. 3.4

Nomenclature for the time evolution of a nuclear reaction in which a composite nucleus is

produced and then forms product nuclei

∗ l
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Note that the ‘‘products’’ are in plural; however, either can indicate a single particle. Typical

examples, presented in both long- and shorthand notations, for reactions between 4He pro-

jectiles and a 238U target are:

4
2Heþ 238

92 U ! 242
94 Puþ g; 238

92 U 4
2He;g
! "

242
94 Pu

4
2Heþ 238

92 U ! 239
94 Puþ 310n;

238
92 U 4

2He; 3n
! "

239
94 Pu

4
2Heþ 238

92 U ! fission; 238
92 U 4

2He; f
! "

:

ð3:2Þ

Note that ‘‘one-way’’ arrows are used in the standard longhand reaction notation. Reac-

tion studies are usually ‘‘one-way’’ exercises, i.e., equilibrium between reactants and

products is not achieved. (Notable exceptions are bombs and the National Ignition Facility

– NIF). On the other hand, Nature does achieve equilibrium (for many reactions) in the

core of stars.

Using the shorthand notation, examples of photon capture, electron knockout and neu-

tron-induced reactions are, respectively:

48Ca g; nð Þ12C e; e0pð Þ208Pb n; 2nð Þ ð3:3Þ

3.2.2 Mass-Energy Conservation: The Q-Value

The most fundamental constraint on any nuclear reaction is established by mass-energy

(E =Mc2) conservation. The Q-value for a reaction is the rest-mass energy difference between

the reacting nuclei and the product nuclei:

Q ¼
X

M0 reactantsð Þc2 %
X

M0 productsð Þc2; ð3:4Þ

where M0 is the rest mass of the nucleus. Nuclear mass-energy is tabulated in terms of mass

excess D, which is often given in units of energy rather than mass (see > Sect. 11.6 of the

Appendix of this Volume, where it is denoted by D):
D ¼ M0 % A uð Þc2; ð3:5Þ

where A is the mass number and u is the unified atomic mass unit (1 u c2 = 931.494 MeV). The

Q-value can be rewritten as

Q ¼ D projectileð Þ þ D targetð Þ½ ' %
X

D productsð Þ ð3:6Þ

Sources of mass-excess values, as well as reaction and structure data, can be found in

NNDC (2010). If the rest mass of the reactants exceeds that of the products, the reaction is

exothermic (Q > 0) and there is no energy threshold for the reaction. If Q is negative, the

reaction is endothermic and projectile kinetic energy must be converted into rest-mass energy

to compensate for this deficiency. Elastic scattering is defined by Q = 0.

In terms of writing energy-balanced (chemical-like) equations, Q-values correspond to

product-side energy release. This is opposite to the sign convention for enthalpies, which can

be viewed as reactant-side energy inputs. (Thus a negative enthalpy corresponds to a positive
Q-value, i.e., the energy released in the reaction.) In a chemical reaction, the energy change

comes from alteration of the atom associations, while in a nuclear reaction, the energy release

comes from a change in the associations (i.e., correlations) at the nucleon level.

Two examples of concern in Big Bang nucleosynthesis, also discussed in >Chap. 12 of

Vol. 2, are:

3
1Hþ 1

1H ! 4
2He; Q ¼ þ19:8MeV ; ð3:7Þ
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4
2Heþ 1

1H ! 2
1Hþ 3

2He; Q ¼ #18:4MeV : ð3:8Þ

The first reaction (with a positiveQ-value) is an important pathway in element formation; the

second (with a negative Q-value) hinders destruction of 4He in stellar environments.

All (n,g) reactions (called neutron capture) on stable target nuclei are exothermic, as are all
(p,g) reactions on stable nuclei. These Q-values are no more than the release of energy

corresponding to the binding energy of that nucleon. One can think of this energy as the

energy difference between an unbound nucleon at zero energy and the Fermi energy, which

while approximately 30 MeV above the bottom of a one-body potential is, by definition, 1 BN
below zero. The condition BN = 0 defines the drip lines, i.e., the limits of nuclear stability with

respect to the strong force.

Charged-particle reactions with heavier nuclei can have positive or negativeQ-values. If the

collective binding energies of the products are greater than that of the reactants, as it would be
the case if the products were closer to the peak in the binding-energy curve than the reactants,

the Q-value will be positive. Negative Q-values occur, for example, when nuclei on the leading

edge of the binding energy curve, such as 12C and 16
8 O, are broken up into still lighter nuclei or

when nuclei heavier than Fe fuse to build a heavier nucleus. Cosmic-ray-induced reactions that

occur in the atmosphere, relevant to Li, Be, and B nucleosynthesis in nature and also to space

travel, are examples of reactions with negative Q-values. (Such reactions are perhaps the

principal impediment to long-duration space travel by humans.)

1
1Hþ 16

8 O ! 10
5 Bþ 7

4Be; Q ¼ #25:3MeV ð3:9Þ

In reactions involving complex nuclei, two important quantities related to theQ-value, and
also to the incident beam energy, are the excitation energy E& (or equivalently U) and the

threshold energy Eth. The excitation energy is the excess energy deposited in the product nucleus

(> Fig. 3.5). For excitation energies below one BN, the discretized nature of E& is important.

The threshold energy is the minimum projectile energy required to form the product

nucleus in its ground state. Compound nucleus formation provides a simple example of this

concept: target (t) + projectile (p) ! CN. In this case, energy and linear momentum

conservation require (in the nonrelativistic limit):

mass#energy : DtþDp þ Ep ¼ DCN þ ECN þ E&; ð3:10Þ

linear momentum : pp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MpEp

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MCNECN

p
¼ pCN; ð3:11Þ

which gives : E& ¼ At=ACNð Þ EP þQ: ð3:12Þ

Since when : E& ¼ 0; Ep ¼ Eth; then ð3:13Þ

Eth ¼ ACN=Atð Þ #Qð Þ: ð3:14Þ

If Q is positive, there is no energetic threshold to limit the reaction. If Q is negative, energy

in excess of the Q-value must be supplied to account for the center-of-mass motion of the

composite nucleus. Equations for the situation in which two products are formed can be found

in standard texts (e.g., Krane 1988; Cottingham and Greenwood 2001).
Under common reaction conditions during the first 50 years of nuclear reaction studies, the

lighter of the two partners was the projectile incident on a heavier target at rest. However, with

the advent of modern heavy-ion accelerators, this situation can now be interchanged, permit-

ting the study of systems in which a heavy projectile is used to bombard a lighter target (reverse
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kinematics). This situation provides a unique experimental environment in which the reaction

products are focused forward.Most recently, it has become possible to create reactions between

colliding beams of heavy nuclei (e.g., Au + Au), thereby retrieving the available energy lost to

center-of-mass motion in conventional fixed-target collisions.

3.2.3 The Nuclear Potential Energy: Coulomb Barrier Effects

A second energetic factor, independent of the Q-value, is imposed by the nuclear potential

energy, which summarizes the respective forces at play in atomic nuclei. As shown in > Fig. 3.6,

the potential energy for a complex nucleus is the sum of

1. A central attractive well created by the strong nuclear force acting at short range on the

constituent neutrons and protons, and

2. A repulsive Coulomb interaction of long range acting between the positive charges of the

target and projectile.

The saturated, short-ranged nature of the attractive nucleon-nucleon interaction creates an

approximately uniform mean field inside the nucleus, giving rise to a nearly flat behavior of

the nuclear potential. Near the nuclear periphery, the long-range Coulomb repulsive interac-

tion overpowers the short-range nuclear attraction, giving rise to the Coulomb barrier and

. Fig. 3.5

Schematic description of the increasing density of nuclear levels as the excitation energy U

increases above the minimum in the potential energy (ground state). The abscissa in this plot is

a deformation coordinate that represents the ‘‘reaction coordinate’’ and shows the change in

level density as the system follows a one-dimensional path toward one possible decay mode, i.e.,

fission. The lowest density of states along this path is indicated for the height of the fission barrier

Bf. In this figure U is used for the excitation energy. This is consistent with the use of U in

thermodynamics to indicate the internal energy. The excitation energy E* is the energy above the

ground-state energy (mass) and in this example is indicated by the horizontal arrow
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a subsequent decrease in the potential at large distances according to the 1/r law. The actual

nuclear potential energy will be multidimensional if spherical symmetry is broken by the

ground state being deformed, as always happens at midshell, or when fission-like phenomena

are being treated.

Using Gauss’ Law and assuming that the charge is uniformly distributed within a sphere of

radius RC, the Coulomb potential (i.e., electric potential energy) has the following form:

VCðrÞ ¼
ZpZte

2

r
¼

1:44ZpZt

r
MeVfm; r $ RC

VCðrÞ ¼
ZpZte

2

2RC
3% r2

R2
C

! "
; r < RC:

ð3:15Þ

Here Zp and Zt are the respective charges of the projectile and target nuclei and r is the

separation distance between the centers of charge of the colliding nuclei.

The Coulomb barrier Bcm
C (in the center of mass) can be estimated as the interaction of

nearly touching spheres, i.e., Bcm
C ¼ VC RCð Þ, where RC = rC(Ap

1/3 + At
1/3). Empirical studies

suggest a value of rC & 1.4–1.6 fm, also discussed in > Sect. 2.2.3.1 of Chap. 2 in this volume.
As with the Q-value, it is necessary to correct for center-of-mass motion, so that in the

laboratory frame, the projectile energy required to surmount the Coulomb barrier is

Blab
C ¼ ACN=Atð ÞBcm

C : ð3:16Þ

For charged particles with kinetic energies below the Coulomb barrier, the projectile

usually elastically scatters from the target (discussion of Coulomb excitation below), leaving

the reactants unchanged. Once the relative kinetic energy of the colliding pair becomes
comparable to the Coulomb barrier, the projectile can classically penetrate into the attractive

nuclear potential and produce a nuclear reaction. (Barrier penetration with lab energies below

Blab
C can occur but the probability is low.) This energy can be supplied by particle accelerators or

in nature by either the high temperatures achieved in the core of a star or by the various cosmic

accelerators that generate the high-energy nuclei found in cosmic rays. The Coulomb barrier is

the energetic factor that determines the rate of reactions between charged nuclei at low energy.

. Fig. 3.6

(a) A schematic representation of the nuclear potential energy as a function of the distance from

the center of a complex nucleus is shown. Neutrons (left) do not experience Coulomb repulsion,

as do protons (right). The Fermi energy level is indicated by eF. (b) A potential plot to scale for

neutrons and protons in 40Ca

e

r

V r

a b
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This barrier also controls the decay rate for channels for which a charge separation is generated.

Examples of the latter are all decay channels of an excited CN producing charged particles in

the exit channel, ground-state (radioactive) decay via alpha-particle emission and fission.

Reactions between charged species first become probable when the projectile kinetic energy

increases to values near the Coulomb barrier energy, permitting the tails of the nuclear matter

distributions to overlap, > Fig. 3.7. Because of the diffuse tail of the matter distribution and

quantum penetration, it is possible for reactions to occur below the nominal Coulomb barrier.
Most often, such reactions involve Coulomb excitation or the transfer of one or a few nucleons

at the nuclear surface. However, more complex reactions can occur, including amalgamation of

target and projectile, although with low probability. As the overlap between the two nuclear

matter distributions increases, the probability for nuclear reactions involving many or all

nucleons becomes increasingly probable.

3.2.4 Angular Momentum Effects: The Centrifugal Barrier

A second repulsive energetic factor is due to the orbital angular momentum associated with

noncentral collisions. As shown in > Fig. 3.8, initial projectile trajectories can be characterized

semiclassically in terms of an impact parameter b, which is the distance between a given
trajectory and one that passes through the center of the target.

The orbital angular momentum ‘!h is quantized, so that for a projectile of mass m and

velocity v,

‘!h ¼ mvð Þb; ð3:17Þ

For the case of two colliding spheres with sharp surfaces, the maximum value of the impact

parameter is determined by the touching condition

bmax ¼ Rp þ Rt ; ð3:18Þ

where Rp and Rt are the respective radii of projectile and target nuclei as shown in the left panel

of > Fig. 3.9.

In a classical geometrical model, the maximum angular momentum for the collision of

objects with a sharp surface is then,

‘max !h ¼ mvbmax ¼ mv Rp þ Rt

! "
¼ mvr0 A1=3

p þ A
1=3
t

# $
: ð3:19Þ

. Fig. 3.7

Schematic picture of the increasing density overlap between projectile p and target t as two

complex nuclei pass by one another
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The amount of energy tied up in rotational energy Erot depends on the impact parameter

and constitutes a centrifugal barrier,

Erot ‘ð Þ ¼ !h2‘ ‘þ 1ð Þ
2mr2

¼ !hcð Þ2 ‘ ‘þ 1ð Þ

2
ApAt

ApþAt

! "
u r2

; ‘ ¼ 0; 1; 2 . . . ‘max; ð3:20Þ

where m is the reduced mass of the system, proportional to ApAt/(Ap + At). (The constant

ћc = 197.3 MeV fm simplifies calculations when combined with the numerical value of u =

931.5 MeV/c2).

Three additional points should be noted about this ‘‘barrier.’’ First, it drops off with

distance much faster than the Coulomb barrier, i.e., 1/r2 versus 1/r. Second, it is not the result

of a real interaction. Rather, it can be viewed as removing that fraction of the energy from the

. Fig. 3.8

Generation of angular momentum ‘ћ for projectiles with different impact parameters b. Each

annular ring corresponds to the area defined by a given impact-parameter range and its

associated ‘-value. The indicated direction of rotation corresponds to ‘‘glancing’’ collisions

represented by the two upper projectile trajectories. The middle trajectory leads to a ‘‘head-on’’

collision without angular momentum generation

l
l
l
l

l

. Fig. 3.9

Left: Touching-spheres model of a nuclear collision. Right: Square-well nuclear potential,

corresponding to a nucleus with a sharp surface

b

R

R

R
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entrance channel that must be ‘‘spent’’ in angular momentum conservation and is thus not

available for a reaction. In the standard language of chemistry, the relative separation is the

reaction coordinate. The energy tied up in conserving angular momentum is not available to

advance the reaction coordinate. Finally, it is this term in the expression for the energy that

when put into the quantummechanics (one-body) problem forces the wave functions to go to

zero at the origin. The combined effects of the Coulomb and centrifugal barriers form

independent constraints on the probability for a nuclear reaction.
The angular momentum involved in a reaction has important consequences, ranging from

nuclear spectroscopic studies at low-angular momentum to the rotational instabilities that lead

to fission, rotating dinuclear configurations (> Sect. 3.4.2), and for populating the highly

deformed local minima responsible for fission isomers and super-deformed nuclei. For

example, in a 238U + 238U collision, angular momenta up to ‘maxћ ! 1,000 ћ are possible.

However, for values above ‘ћ! 80–100 ћ the composite system becomes rotationally unstable

and cannot fuse. Thus all of the cross section associated with angular momentum above this

stability limit is associated with reaction channels other than CN formation.

3.2.5 Summary of Energetic Factors in Nuclear Reactions and the
Separation of Thermodynamic and Kinetic Factors

To form a composite nucleus, the threshold energy must be exceeded and the available energy

must exceed the combined Coulomb and centrifugal barriers for the reaction probability to be

appreciable. The threshold energy is imposed by mass-energy conservation and is important
only for negative Q-values. The Coulomb barrier applies only to charged-particle reactions.

The centrifugal barrier is not a fundamental constraint since ‘ ¼ 0 is always possible. (Also

recall that ‘ is not a good quantum number if the potential is not spherically symmetric. This

means that ‘-waves can mix in such cases. However, as parity is a good quantum number, even

values of ‘mix with even and odd with odd.) As a general rule, the Coulomb barrier dominates

for charged-particle-induced reactions, except for some cases where light nuclei are involved.

For (n,g) reactions on stable nuclei, the Q-value is always positive and the Coulomb barrier is

zero, so only the centrifugal barrier constraint is relevant.
If the nuclei on either side of the reaction can exist only in one (i.e., the ground) or a few (as

in the products of a direct reaction) states, the entropy of the participants is small as is the

temperature T. Under these conditions, a thermodynamic discussion reduces to one of

enthalpy (as the ‘‘SdT ’’ term, i.e., the thermal term, in the free energies is tiny.) The Q-value

represents the negative of the enthalpy, so a positiveQ-value represents a spontaneous reaction.

At T = 0, there are only two possible values of the degree of reaction: 0 (i.e., none) or 1 (all). So

given enough time, something thermodynamics cannot give insight into, a positive Q-value

will yield 100% products. (An energetically downhill reaction at equilibrium will yield 100%
products at T = 0, a case realized in simple radioactive decay.) The barriers (both Coulomb and

centrifugal) are kinetic factors. They do not influence ultimate equilibrium constants but they

do determine rates (in the same way that the height of a chemical transition state determines

the rate of a chemical reaction).

With the exception of the case of stars, or perhaps ultimately earth-bound fusion

reactors, rates rather than true equilibrium are the concern. (As the reverse reactions

required for true equilibrium do not occur.) Thus the description of the decay of a CN is

a kinetic model.
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3.2.6 Cross Sections: An Introduction

The compound nucleus scenario described in the previous section provides a useful framework

for discussing the probability for a nuclear reaction as characterized by its cross section. As long

as the excitation energy is not so high that internal thermal equilibration is short circuited, one

can separate the formation process from the decay. When this is the case, the reaction

probability can be factored into two terms: (1) the total probability for the projectile and

target to fuse (entrance channel), and (2) the individual probabilities for formation of each
product nucleus (exit channel). The total cross section can be defined more precisely in terms

of the difference between the incoming and outgoing flux of beam particles. For specific exit

channels, the production cross section is the fraction of the total cross section that yields

a given product nucleus. Such a description fits equally well for direct reactions, which do not

involve the intermediate composite-nucleus step.

In estimating the total reaction probability, a simple geometric touching-spheres model

provides a useful benchmark calculation (> Fig. 3.9). In this model, a reaction will occur if the

impact parameter b is less than or equal to the sum of the nuclear radii. For larger values of b
there will be no reaction. The cross-sectional area defined by this geometry leads to a classical

or geometric cross section,

sgeo ¼ pb2max ¼ p RP þ Rtð Þ2 ¼ pr20 A1=3
p þ A

1=3
t

! "2
; r0 % 1:40& 1:60 fm: ð3:21Þ

For medium-mass nuclei, this value has dimensions of order 10&24 cm2, which defines the

unit for cross sections, the barn (b); i.e.,

1 barn ' 1:0( 10&24cm2 ¼ 100 fm2: ð3:22Þ

For projectile energies well above the threshold and/or Coulomb barrier, > Eq. (3.21) serves as

a good approximation for the total reaction cross-section, sR % sgeo.
For neutron-capture (n,g) reactions at very low energies ()1 MeV), microscopic effects

come into play, leading to significantly enhanced cross sections. Since (n,g) reactions can

proceed without threshold or Coulomb barrier limitations, reactions can occur at very low

energies. More importantly, the wave nature of matter becomes the dominant factor. At very

low energies (thermal, i.e., 300 K, energies correspond to an average kinetic energy of 0.025 eV)

the neutron reduced de Broglie wave length (l!¼ !h=p ¼ 1=k) is much larger than the nuclear

radius; i.e., l!> R . The reduced de Broglie wave length is the reciprocal of the wave number

l!¼ 1=k, where k = (2mE)1/2/ћ. Thus, for very low neutron energies, the values of sR can greatly
exceed s.geo

Between the thermal and geometric extremes (i.e., between where the de Broglie wave

length dominates and the width of the average state greatly exceeds the spacing between states)

there is a resonance region where the cross section is characterized by sharp spikes at well-

defined energies. All three of these regions are illustrated schematically in > Fig. 3.10.

On the other hand, charged-particle-induced reactions at low energies are suppressed by the

Coulomb barrier. To account for this effect, a simple modification of the form

sR ¼ sgeo 1& BC

#
Ep

$ %
; Ep * BC ð3:23Þ

provides a good first approximation to the cross-section dependence on bombarding energy.
By employing more sophisticated models that account for the diffuse nuclear surface and

diffraction effects, a more quantitative description of the reaction cross section can be

obtained.
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An important component of the reaction cross section is the relative distribution of angular

momenta, or ‘-wave distribution, generated in a collision. Angular momentum affects the

population of quantum states of a given spin in direct reactions and is also a major factor in

generating rotating nuclei that stretch axially into highly deformed nuclear shapes (Janssens

and Khoo 1991). Angular momentum also destabilizes nuclei toward fission, much as a high-

charge content does. In the geometric model the angular momentum is given by ‘ћ =mvb and
‘maxћ =mv(Rp + Rt), as shown in> Fig. 3.8, and thus it is possible to partition the cross section

by impact parameters,

sgeo‘ ¼ p b2‘þ1 # b2‘
! "

¼ pl!2 ð‘þ 1Þ2 # ‘2
# $

¼ pl!2 2‘þ 1ð Þ: ð3:24Þ

By summing over all ‘-waves the total reaction cross section, sgeoR , is then given by

sgeoR ¼ pl!2
X‘max

‘¼0

2‘þ 1ð Þ ¼ pl!2 ‘max þ 1ð Þ2: ð3:25Þ

In the simple black-disk model described above, nuclear effects of the diffuse nuclear
surface and the discrete (i.e., quantum) nature of the allowed nuclear structure have been

ignored and it is assumed that nuclear matter is perfectly opaque. The optical model addresses

these omissions and is the subject of the next major section. One of the major results of this

model is the introduction of ‘-dependent transmission coefficients, T‘, where 0 & T‘ & 1. The

reaction cross section then becomes

sR ¼
X

‘

s‘pl!2
X

‘

2‘þ 1ð ÞT‘: ð3:26Þ

These transmission coefficients are then the probability that the target-projectile collision

will penetrate the interaction barrier and produce a nuclear reaction. Thus as ‘ increases, T‘

decreases; that is, T‘ = 1 corresponds to complete absorption and T‘ = 0 to pure elastic

scattering.

. Fig. 3.10

Left: Schematic representation of the excitation function for the capture of neutrons in a (n,g)

reaction. In this figure the velocity of the neutron is indicated by un. Right: Total cross section

dependence on bombarding energy per nucleon for a charged-particle reaction
s
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3.2.7 Cross Sections, Excitation Functions, and Angular Distributions

Experimentally, evidence for a target-projectile interaction can be gained from measuring the

probability for formation of the products that populate the various exit channels. This

information then serves as the basis for interpretation of the reaction mechanism through

which a nuclear collision proceeds. It may also provide essential data for nuclear astrophysics,

as described in>Chap. 12 of Vol. 2, and for evaluating and implementing nuclear applications,

discussed in >Chaps. 38 and > 39 of Vol. 4).
The total reaction cross section is the sum of all possible reaction channels:

sR ¼
P
b

s a; bð Þ. Exit channels may involve only a single heavy nuclear product, as in the

case of (n,g), reactions two fragments (as in fission) or even multiple fragments, as in multifrag-

mentation. By measuring all possible exit channels, sR can be determined. Alternatively, sR can
be measured with beam-attenuation measurements by measuring the rates [particle/s] of the

beam reaching a detector with the target in and with it out (see the Addendum).

Measurements of production cross sections are performed with a wide range of both

radiochemical and direct counter techniques. Historically, radiochemical techniques were

particularly useful for measuring heavy residues, for which discrete Z and A identification
are difficult to determine with nuclear particle detectors in reactions with normal kinematics.

However, with the availability of very heavy-ion beams and the widespread use of reverse

kinematics, the measurement of mass (dsA/dA), charge (dsZ/dZ), and isotope (dsZ dsA/
dAdZ) distributions from direct counter techniques are now routinely done. For heavy

residues, these values are frequently summarized graphically in terms of an excitation function,

or cross section as a function of projectile energy, as in > Fig. 3.11. Extensive listings of

production cross sections are maintained in several databases (IAEA 2010; NEA 2010;

NNDC 2010; RNDC 2003).
In conducting direct counter experiments, the emission of reaction products over the full

4p of solid angle (y,f) must be taken into account, as well as the transformation of laboratory

data into the center-of-mass system (Krane 1988). Thus, measurements of the angular distri-

bution, i.e., differential cross section as a function of angle ds (y,f)/dO, must be made. In the

absence of spin-polarized targets or projectiles, the cross section is independent of azimuthal

angle f. In this case, the angular distribution is characterized by the single differential cross

section, ds(y)/dO, where O is the solid angle into which the particles are emitted. The

production cross section is then given by

s a; bð Þ ¼
ð2p

0

ðp

0

ds y;fð Þ
dO

dO ¼ 2p
ðp

0

ds yð Þ
dO

siny dy: ð3:27Þ

For statistical decay of a composite nucleus with no angular momentum, particles are

emitted isotropically; that is, ds (y)/dO is independent of angle in the center-of-mass system.
Thus, ds (y)/dO= constant or ds (y)/dy/ siny. If the composite nucleus is formed in a state of

high angular momentum with the axis of rotation oriented perpendicular to the beam

direction (i.e., from an ensemble of reactions, the angular momenta are uniformly distributed

in a plane perpendicular to the beam), as in the approximate case in heavy-ion reactions, then

one observes strong forward–backward peaking, reaching a limiting value of ds(y)/dO,
/ 1/siny or ds(y)/dy = constant. Schematic angular distributions for these two extremes are

shown in > Fig. 3.12.
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On the other hand, for direct reactions, the projectile-like products tend to be focused in

the direction of the incident beam momentum vector. Depending on the quantum state,
collision energy and time scale, forward peaking or peaking at specific angles will be observed.

Thus, angular distributions serve as key indicators of the degree of equilibration achieved in

a reaction, as well as providing a means of evaluating the reaction mechanism and imparted

angular momentum.

One of the most sensitive tests of any nuclear reaction model is its success in reproducing

absolute doubly differential cross sections d2s/dO dE. In order to obtain the differential cross

section for a given exit channel, it is necessary to integrate over the full kinetic energy

distribution of the emitted particles at a specific angle,

. Fig. 3.11

Excitation function for the 197Au(4He, xn)2012xTl reaction (Lanzafame and Blann 1970)

s

a x

a

. Fig. 3.12

Schematic angular distributions for particle emission from an equilibrated hot nucleus. Solid line

is for a systemwith no angular momentum and dashed line is an upper limit for very high angular

momentum
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q
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ds yð Þ
dO

¼
Z1

0

d2s y; Eð Þ
dOdE

dE: ð3:28Þ

It is the kinetic energy distribution as a function of angle that reveals the physics content of

a nuclear reaction most transparently. For a fully equilibrated CN, the spectra of evaporated

light particles are Maxwellian in shape and unchanging in angle in the center-of-mass system.
The spectra of charged particles are suppressed at low energies by the Coulomb barrier. Two-

body direct reactions exhibit discrete spectral lines or resonances, depending on the nuclear

structure sampled in the collision. The two-body (simple momentum balance) scenario also

produces a good first-order description of fission, yielding Gaussian-like fragment energy

spectra resulting from highly stretched breakup configurations.

3.2.8 Cross-Section Measurements

Determination of the cross section for a nuclear reaction product requires measurement of the

reaction rate, R = number of events/unit time. As in any two-body collision (second-order rate

process), the rate is the product of a target-projectile collision factor cnpnt and the ‘‘probabil-

ity’’ s that if a collision occurs, a specific product will be formed, i.e.,

dN a; bð Þ
dt

¼ R a; bð Þ ¼ cnpnts a; bð Þ; ð3:29Þ

where c is a coefficient and the dimensions of npnt are defined by the geometry of the

experiment. Three cases are of general interest:

1. Accelerator-based bombardments in which a beam of particles np is incident on a planar

target.

2. Nuclear reactors, where a gas of neutrons permeates nt target nuclei.

3. Stellar interiors, where the reactants act as two interacting gases.

Practical aspects of cross-section calculations are discussed in the Addendum at the end of the

chapter.

3.3 Scattering Theory

The presentation in the preceding section is meant to give a general overview of relevant

concepts needed to describe nuclear reactions. In this section a treatment of quantum scatter-

ing is presented. This presentation is meant to facilitate a comparison between various types of

scattering and to link nuclear reactions to structure. Additional background on scattering

theory can be found in (Bertulani 2009).

3.3.1 Preliminaries

Before dealing with the scattering problem, the quantum objects under study should be

considered. If the neutron and proton constituents of the nucleus were noninteracting, self-

bound nuclei would not exist. One might posit that the binding energy is the sum of attractive
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two-body interactions, all A(A ! 1)/2 of them. This amounts to making two assumptions:

(1) that neutrons and protons are the only constituents in nuclei, i.e., nucleons are elementary

particles and (2) that the interaction is pair-wise additive. The former assumption is formally

incorrect, but not bad when the available energy is less than the mass of the pion, the lightest

field particle that mediates the residual strong force (nuclear force). The second assumption is

also likely wrong. Most nucleon-based descriptions of the residual strong force include 3-body

forces between nucleons, but the origin of these – beyond pair-wise additive contributions – is
unclear. Such interaction terms could come from the fact that nucleons are not truly elemen-

tary and the employed degrees of freedom (DoF), those of the nucleons, is an incomplete set.

(Axilrod and Teller 1943 first introduced 3-body forces in an attempt to explain the crystal

structure of solid Ar as a patch when they simplified the many-body problem by dropping all

of the degrees of freedom associated with the electrons and retaining only those associated

with the nuclear positions. Their assumption being that, if they could have solved the

problem employing all degrees of freedom, a 3-body force would not be needed.) However,

because the field-mediating bosons of Quantum Chromodynamics do interact with one
another, while they do not in Quantum Electrodynamics, pair-wise additivity would not be

expected in the former.Whatever the reason, nucleon-based theories require 3-body terms (see

also >Chap. 2 in this Volume).

High-energy electron reaction studies measuring (e,e0p) cross sections have shown that

only 70–80% of the protons participate in independent-particle motion of the type imagined

in one-body potential models. This low ‘‘occupancy’’ of one-body states is caused by strong

correlations within the nucleus. These correlations are primarily between pairs of nucleons, but

a-particle clustering, sometimes called ‘‘quarteting,’’ in any low-density region also suppresses
one-body behavior. Nucleons are somewhat different objects inside and outside a nucleus, as

they effectively lose 0.8% of their mass, i.e., the binding energy, when transported inside

a nucleus. Often, the term ‘‘dressed’’ is used to describe nucleons in the nucleus.

Very recent electron scattering studies using two-nucleon knockout reactions (e,e0pp) and

(e,e0pn), have shed considerable light on these in-medium correlations (Subedi et al. 2008).

This work showed that the overwhelming strong pair correlations are between neutrons and

protons with large relative momenta and small center-of-mass (CM) momenta (> Fig. 3.13).

Large relative momenta are expected due to the rather hard core of the nucleon-nucleon
interaction, but the tensor force undoubtedly plays a role and helps distinguish like-nucleon

versus different-nucleon correlations. The tensor force arises because the interaction between

nucleons depends on the relative orientation of their spins with respect to their relative spatial

vectors (see >Chap. 2 in this Volume).

Due to the Pauli principle, only n-p pairs can have their spins aligned and otherwise have

the same quantum numbers. These pairs are referred to as short-range correlated (SRC) pairs

and their presence strongly affects the properties of cold, dense nuclear matter, such as that

found in neutron stars. This nucleon-nucleon interaction is also required to explain the fact
that the n-p spin triplet is bound (i.e., the deuteron) while the n-n and p-p, required singlets,

are not. Consideration of n-p interactions is also essential to understand the evolution of the

phenomenological spin-orbit interaction as a function of n/p asymmetry (Otsuka 2005), one

of the most discussed topics in nuclear structure research today.

A focus on like-nucleon singlet (spin zero, i.e., BCS-like) pairing is warranted in an effort to

explain the slight variation in mass responsible for the overwhelming dominance of even-even

nuclei as well as explaining their ground-state spins. On the other hand, this myopic focus near

the Fermi energy misses the source of the bulk of nuclear binding.
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Descriptions of nuclei based on realistic nucleon-nucleon interactions that include the

effects mentioned above have, as of this time (2010), only been able to deal with nuclei withA<
12 (Pieper et al. 2002). Above this mass number, various approximations are employed.

Simplifying this many-body problem all the way down to independent particles moving in

an overall potential is of great heuristic value and utility. (This utility does not extend to

calculation of the total binding energy. For this, one needs to add a macroscopic correction to

the total binding energy. In this macroscopic-microscopic approach, pioneered by Strutinsky
(1967), it is the macroscopic part that captures the impact of nucleon-nucleon correlations far

removed from the Fermi surface). The single-particle approximation leads to the one-body

problem, i.e., the type solved for generating hydrogenic wave functions (in this case, a solitary

e!moving in a 1/r potential.) The greatly simplified (‘‘one-body’’) potentials (one for neutrons

and one for protons) are separately adjusted to explain phenomena that occur near the Fermi

surfaces for neutrons and protons. In fact, to explain behavior away from the Fermi surfaces,

the potential depths have to be made both energy-dependent and complex.

Consider a nucleon interacting with a (one-body) potential well formed by, at least, the
A ! 1 interactions of this nucleon with the others. Now imagine that this potential is itself in

a large box of dimensions much larger than the range of the nuclear force (> Fig. 3.14).

Considering only the short-ranged nuclear force, outside the well the potential is zero. The

box, while large relative to nuclear dimensions, presents a boundary condition, so the box

contains (in the absence of the internal potential) all the ‘‘particle-in-a box’’ states. The wave

function with the lowest energy has no internal nodes; the more nodes - the higher the energy

(eigenvalue).

As the depth and width of the internal potential is ‘‘dialed up,’’ these particle-in-a-box wave
functions are modified – increasing the frequency in the region of the potential well and can

even localize some of them entirely within the potential well. The latter, having no probability

far-removed from the potential well, are the ‘‘bound-states.’’

The presence of the attractive potential produces a positive phase shift d of the wave

function at large distance, relative to the wave function without the potential (> Fig. 3.15).

. Fig. 3.13

The initial nucleon correlations as seen from a two-nucleon knockout experiment (left) are

summarized in a pie chart on the right (Subedi et al. 2008)
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This phase shift is a direct consequence of the higher frequency within the range of the potential.

As the potential is made either wider or deeper, states are ‘‘sucked’’ in (from the box) and are
localized in the potential well. In the case of a one-dimensional square well of depth Vand width

L, the number of bound states for a particle of mass m is N = 1 + [(2mV)1/2L/(pћ)] where the
square brackets stand for the integer part. Every time the phase shift passes p, another one of
the continuum (particle-in-a-box) states is ‘‘sucked’’ into the well. This phase shift, which plays

a central role in scattering problems, records the asymptotic compression of the wave function,

but the number of (1/2) oscillations (each producing a bound state) is lost. However, the

number of bound states for each ‘,N‘, can be recovered as it is encoded in the zero energy (i.e.,

threshold) phase shift, d‘(0) = N‘ p. This is known as Levinson’s Theorem.

3.3.2 The Optical Model (OM)

The interaction of a nucleon with a nucleus can be modeled if the potential is made complex

(Buck et al. 1960; Hodgson 1967; Messiah 1958). The common form is

U r; Eð Þ
¼ V r; Eð Þ þ iW r; Eð Þ
¼ %VvðEÞf r; rv; avð Þ þ 4asVsðEÞf 0 r; rs; asð Þ þ VsoðEÞh r; rso; asoð Þ ‘sð Þ þ Vc r; acð Þ½ '
þ i %WvðEÞf r; rv; avð Þ þ 4asWsðEÞf 0 r; rs; asð Þ þWsoðEÞh r; rso; asoð Þ ‘sð Þf g:

ð3:30Þ

where ‘!h and s!h are angular momentum vectors and (‘s) is the scalar product of the vectors
‘ and s.

. Fig. 3.14

Nucleon potential in a box. As the potential is made either deeper or wider, states are moved

from ones quantized only by the box boundary conditions, essential free waves, to those

confined to the central potential. The latter correspond to bound nuclear states
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Note that the potential depends on the projectile center-of-mass energy E as well as radius r.

The former accounts for the nonlocalities (and thus generates effective masses and spectro-

scopic factors, which are related to the occupancies of single-particle states). V and W are the
real and imaginary parts of the potential, both of which have volume, surface, and spin-orbit-

dependent components, Vv, Vs, and Vso, respectively. (The spin-dependent term given above is

appropriate for the scattering of spin½ particles by spin 0 nuclei; for the scattering of particles

of zero spin, there is no spin-dependent term, while for the scattering of particles of higher

spin, more complex forms are required). Vc is the Coulomb potential, a term needed if the

incident particle is charged. The refracting potential Velastically scatters the incident particles,

and the absorbing potential W takes account of all the inelastic processes.

The unitless form factors (> Fig. 3.16) are most often taken as

f r; ri; aið Þ ¼ 1

1þ exp r%Ri

ai

! " ; ð3:31Þ

and

h r; ri; aið Þ ¼ % 1

2

!hc

mpc2

# $2 f
0
r; ri; aið Þ
r

: ð3:32Þ

Here f 0 = df/dr.

The nuclear radii are Ri = riA
1/3 and the parameters ai encode the diffuseness of the nuclear

surface. The subscript (i) allows these constants to be different for the different terms in the

potential. The spin-orbit form is analogous to the Thomas form for atoms. Relativistic

treatments generate such a term, but do not provide insight into the strength or even its

sign. The Coulomb potential can be taken to be that for uniformly charged spheres or

calculated numerically assuming form factors for the density similar to that for the potential.

. Fig. 3.15

Illustration of the change in a wave function u, with an attractive potential and the associated

phase shift

u A kr

u A kr d

kr
kr

d

u
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To calculate the observable cross sections for two particles interacting through the above

potential, Schrödinger’s equation must be solved,

!h2

2m
r2Cþ E " Vð ÞC ¼ 0; ð3:33Þ

where the radial part of the kinetic energy operator is (in D-dimensions)

r2
r ¼

1

rD"1

@

@r
rD"1 @

@r
: ð3:34Þ

As the spin of the incident particle can couple in two ways to the orbital angular momen-

tum ‘ (to give total angular momenta of either j = ‘& 1/2), there are two solutions for each ‘ to
the one-body quantum problem posed above. These solutions are identified with ‘‘+’’ for the

‘‘stretched’’ (i.e., parallel) case and ‘‘"’’ for the ‘‘jack-knifed’’ case. In the solution of the radial
problem, the kinetic operator can be reduced to a simple second derivative by solving for the

product of r times the radial wave function, sometimes called the reduced radial wave function y.

Employing y and defining r = kr, the resulting radial wave equations become,

d2y‘
þ rð Þ

dr2
þ 1" VC

E
" "Vv þ iWvð Þf rð Þ þ 4as Vs þ iWð Þf 0 rð Þ

E

!

" ‘ Vso þ iWsoð Þh rð Þ
E

" ‘ ‘þ 1ð Þ
r2

"
y‘

þ rð Þ ¼ 0 and

ð3:35Þ

d2y‘
" rð Þ

dr2
þ 1" Vc

E
" "Vv þ iWvð Þf rð Þ þ 4as Vs þ iWð Þf 0 rð Þ

E

!

þ ‘þ 1ð Þ Vso þ iWsoð Þh rð Þ
E

" ‘ ‘þ 1ð Þ
r2

"
y‘

" rð Þ ¼ 0:

ð3:36Þ

. Fig. 3.16

Form factors of the OM for the real, f(r), and imaginary, g(r) = 2af 0(r), components

¶
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The wave number is k ¼ ðl!Þ$1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2Eð Þ

p
=!hc. These (reduced) radial wave functions are

zero at the origin and beyond the nuclear field tend asymptotically to the form

y‘
% rð Þ / H in

‘ ðrÞ
" #

$ S‘
% Hout

‘ ðrÞ
" #

;

/ G‘ rð Þ $ iF‘ rð Þ½ ' $ S‘
% G‘ rð Þ þ iF‘ rð Þ½ ';

ð3:37Þ

where the terms in square brackets can be thought of as the incoming and outgoing waves and

the S%‘ ¼ exp 2id‘ð Þ are the elements of the so-called scattering matrix, where d‘ are the phase
shifts associated with the nuclear potential. (If the potential is spherical, ‘ is a good quantum

number and one only needs to be concerned with the diagonal elements of this matrix, indexed

by ‘. If on the other hand, the potential is deformed, ‘ is not a good quantum number and

a full matrix – introduced by J. Wheeler – is required). The regular (goes to zero at the origin)
and irregular (finite at the origin) Coulomb functions F‘ (r) and G‘ (r) are solutions of
> Eqs. 3.35 and > 3.36 without the nuclear terms. These functions have the asymptotic forms

F‘ rð Þ$!
r!1

sin r$ !ln2r$ 1

2
‘pþ s‘

$ %
;

G‘ rð Þ$!
r!1

cos r$ !ln2r$ 1

2
‘pþ s‘

$ %
:

ð3:38Þ

The incoming and outgoing waves have the asymptotic forms

H in
‘ rð Þ$!

r!1
exp $i r$ !ln2r$ 1

2
‘pþ s‘

& '$ %
;

Hout
‘ rð Þ$!

r!1
exp þi r$ !ln2r$ 1

2
‘pþ s‘

& '$ %
:

ð3:39Þ

The nonspin-flip B(y) and spin-flip A(y) scattering amplitudes are

A yð Þ ¼ fC yð Þ þ 1

2ik

X1

‘¼0

‘þ 1ð ÞSþ‘ þ ‘S$‘ $ 2‘þ 1ð Þ
( )

e2is‘P‘ cosyð Þ; ð3:40Þ

B yð Þ ¼ 1

2ik

X1

‘¼0

Sþ‘ $ S$‘
( )

e2is‘P‘
1 cosyð Þ ; ð3:41Þ

where s‘ is the (unitless) Coulomb phase shift for the ‘th partial wave, fC(y) is the (unitless)
Coulomb scattering amplitude, and ! is the (unitless) Coulomb or Sommerfeld parameter.

These are given by

s‘ ¼ argG ‘þ 1þ i!ð Þ ¼ s0 þ
X‘

s¼0

tan$1 !

s

* +
;

fC yð Þ ¼ $ !

2k
csc2

y
2

& '
exp 2is0 $ i! ln sin2

y
2

& '$ %
;

ð3:42Þ

and

! ¼
ZpZte

2

!hv
¼

mZpZte
2

k!h2
¼ 0:1575 ZpZt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ap

Elab=MeV

s

: ð3:43Þ
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(The gamma function G is used in the definition of the Coulomb phase shift.) There are three

potential observables for elastic scattering. The first is the differential (elastic) scattering cross

section,

dsE
dO

yð Þ ¼ Aj j2 þ Bj j2: ð3:44Þ

The above reduces to the famous Rutherford formulawhen the Coulomb amplitude fC is all

that contributes to the scattering amplitude

dsRuth
dO

¼ fCj j2 ¼
1:44ZpZt

4E=MeV

! "2

sin4 y
2

# $ fm2 ¼ Dc
2

16
csc4

y
2

% &
fm2; ð3:45Þ

where Dc is the distance of closest approach.

The second and the third observables are the polarization, P(y), and spin rotation, Q(y),
(Glauber and Osland 1979),

P yð Þ ¼ 2 ImAB%

Aj j2 þ Bj j2
and Q yð Þ ¼ 2 ReAB%

Aj j2 þ Bj j2
: ð3:46Þ

If the incident particle is a neutron, the total elastic cross section is finite and integrates to

sE ¼ pl!2
X1

‘¼0

ð‘þ 1Þ 1& Sþ‘
'' ''2 þ ‘ 1& S‘

&j j2
n o

: ð3:47Þ

To deduce the total inelastic (sometimes called the reaction) cross section, all one needs to

note is that for each ‘-wave, the outgoing wave is reduced in intensity by |S|2 relative to the

ingoing wave, therefore

sR ¼ pl!2
X1

‘¼0

‘þ 1ð Þ 1& Sþ‘
'' ''2

! "
þ ‘ 1& S‘

&j j2
# $n o

: ð3:48Þ

The transmission coefficients can be identified with

T'
‘ ¼ 1& S'‘

'' ''2 ð3:49Þ

and in so doing, one can see that the reaction cross section in the absence of intrinsic spin

effects results in >Eq. (3.26).
The total cross section, a quantity finite only for neutron scattering, comes from the sum of

the elastic and reaction cross sections. Upon canceling terms for each pair of |1& S‘|
2 + 1& |S‘|

2

terms, one gets

sT ¼ sE þ sR ¼ 2pl!2
X1

‘¼0

‘þ 1ð Þ 1þReSþ‘
# $

þ ‘ 1& ReS&‘
# $( )

: ð3:50Þ

There are several interesting benchmarks related to the results of > Eqs. (3.47)–(3.50). The

elastic scattering cross section (for neutrals) spans from where S‘ = 1 (both elastic and inelastic

cross sections are zero) to S‘ = &1. Thus the cross section for each ‘ lies between

0 ( sE;‘ ( 4pl!2 2‘þ 1ð Þ: ð3:51Þ

When S‘ = 0,

sE;‘ ¼ sR;‘ ¼ pl!2 2‘þ 1ð Þ thus sT;‘ ¼ 2pl!2 2‘þ 1ð Þ: ð3:52Þ
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> Equation (3.52) demonstrates that the presence of the inelastic scattering implies an

elastic contribution. This explains the factor of 2 in >Eq. (3.50), which indicates that the total

cross section for neutrals, that is, the case for which the elastic scattering cross section is finite,

is twice the geometric reaction value. Recalling the initial discussion of the geometric cross

section, partial waves with ‘ greater than some value ‘max do not contribute significantly to the

summations in > Eqs. (3.48)–(3.50), thus the sums may be truncated.

3.3.3 The Dispersive Optical Model (DOM)

In 1926 R. de L. Kronig noticed that the reflection and absorption of light were interrelated.

The next year Hans Kramers explained this relation, essentially allowing for the calculation of

both the absorption (extinction coefficient) and the index of refraction from the measurement

of the 90! reflectance. The key concept is that the response of a system to the stimulus (in this

case light and the response in question is called the dielectric response) is dictated by a complex

quantity, for which the real and imaginary parts are ‘‘two-sides of the same coin.’’ The ‘‘sides’’
are related to one another by energy integrals over the complementary components. (That is,

the real part at energy e is related to an integral over all energies of the imaginary component

with a pole at the energy of interest, and vice versa.) For example, in the case of the complex

dielectric response (a in the equations below) of matter as a function of the frequency of the

stimulus o
a ¼ a1 þ ia2

a1 oð Þ ¼ 1

2
P

ð1

&1

a2 oð Þ
o0 & o

do0 ; a2 oð Þ ¼ & 1

2
P

ð1

&1

a1 oð Þ
o0 & o

do0;
ð3:53Þ

where P stands for the ‘‘Cauchy principal value’’ of the integral whose integrand has

a singularity. These relationships are the result of ‘‘causality’’; that is, the system cannot respond

before the stimulus arrives. From the earliest days of the nuclear optical model, it was

appreciated that this relationship should be enforced, as it is in all careful optical spectroscopy.
The difficulty in imposing causality is that the interrelationships are in the form of

‘‘dispersion relations.’’ That is, one must know the real (imaginary) part of the response at

all energies to deduce the imaginary (real) response at any energy. It is the ‘‘all’’ that provides

the stumbling block. As a consequence, this dispersive form of the optical model, or dispersive

optical model (DOM), has only limited applicability. However, recently, more effort has been

directed at the dispersive optical model analyses of data, as they have been shown to be of great

value in predicting the behavior of nuclei removed from stability. The utility of this generator is

that in addition to using scattering data (at positive energy), structural data (at negative energy,
i.e., the position of bound states) is used to fix the real part of the potential, making both parts

more robust (via the dispersion interrelationship). A concise discussion of the Kramers–Kronig

dispersion relations as applied to the dielectric response can be found in (Kittel 1986). A full

presentation of the dispersive optical model can be found in (Mahaux and Sartor 1990) and its

most recent application to nuclei as a function of n/p asymmetry can be found in (Charity et al.

2006, 2007). The most important implications of the DOM [based primarily on nucleon

knockout reactions (e,e0p) and n and p elastic scattering] are presented below.

First, the connection between the full complex potential and that used in one-body
structure models must be unmasked. The imaginary part of the potential vanishes at the

Fermi surface. Thus the real one-body potential used as a basis for simple nuclear structure

Nuclear Reactions 3 169



models is only valid near the Fermi surface. Or conversely, if one is interested in phenomena

that only involve excitations near the Fermi energy, working with a real potential is valid. On

the other hand, at high excitation energies, which are likely to involve particles far above and

holes far below the Fermi surface, the imaginary component must be dealt with.

The second feature of this model is that effective masses and spectroscopic factors can be

extracted from the energy dependence of the potentials (the former from the real part and the

latter, which are related to the occupancy of single-particle states, from the imaginary part).
The most striking result of the optical model is that the potential must be made energy-

dependent if either the position of the single-particle levels or elastic scattering over a broad

range of energies are to be reproduced. While the positions of the levels near the Fermi surface

can be extracted from single-nucleon transfer reactions, (e,e0p) reactions are needed to

determine the strength functions below the Fermi surface. (These functions will exhibit

sharp peaks for orbits slightly below the Fermi surface and broad distributions for deeply

bound orbits.) This dependence is shown in > Fig. 3.17 for 208Pb.

If the dependence is linear, an effective mass (m!) can be introduced to allow the single-
particle energy to be recast in terms of a fixed potential,

e ¼ !hkð Þ2

2m
þ V0 þ

dV

de
e

! "
¼ !hkð Þ2

2m
þ V0 þ ae½ ' ; ð3:54Þ

e ¼ !hkð Þ2

2m 1( að Þ þ V0ðrÞ
1

1( a

# $
¼

!hkð Þ2

2m! þ V 0
0ðrÞ; ð3:55Þ

with

m!
m

¼ 1( a ¼ 1( dV r; eð Þ
de

) 0:7 ð3:56Þ

Referring back to the harmonic oscillator, > Fig. 3.18 shows that an effective mass greater
(less) than the nucleon mass will decrease (increase) the single-particle level spacing, making

both the single-particle level density and many-body density of states larger (smaller).

The above discussion is associated with the finite range of the nucleon-nucleon interaction.

This can also be viewed (via a Fourier transform) as a momentum dependence of the

. Fig. 3.17

The energy dependence of the potential needed to reproduce the positions of the single-particle

levels for 208Pb (from Mahaux and Sartor 1990)
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interaction. As a consequence, the effective mass contribution mentioned above is often called
the ‘‘k-mass’’ or the momentum-dependent effective mass. This mass is relevant for matter

(i.e., neutron-star calculations) and its dependence on neutron–proton asymmetry has

attracted considerable attention (Li et al. 2008).

The description of real nuclei requires more than the k-mass. A second multiplicative

effective-mass term, the ‘‘omega mass’’ ormo, arises from a time nonlocality of the interaction.

(As the exchange involves mesons with mass, the ‘‘throwing’’ and ‘‘catching’’ are not simulta-

neous events.) This time nonlocality can be viewed as a fundamental energy (or frequency)

effect. Following prescriptions developed by Mahaux and collaborators (Mahaux and Sartor
1990), the relative change of the effective mass from real nucleon masses can be represented by

two unitless terms,

m!

m
¼ mkmo: ð3:57Þ

The ‘‘omega mass’’ is peaked at the nuclear surface, producing what solid-state scientists

would call surface states. In the nuclear case, this just corresponds to low-lying (i.e., near the

Fermi surface) collective excitations associated with the physical surface. The combined

effective masses and the potentials from which they are derived are shown in > Fig. 3.19. The

k-mass suppresses the effective mass in the interior and the omega-mass produces a peak

at the nuclear surface. Also extracted from this analysis are the occupation probabilities of

single-particle levels, a subject that will be addressed in the next section when discussing single-

particle knockout reactions from nuclei far-removed from stability.
What must also be appreciated is that effective masses: (1) can be viewed as a compact

repackaging of other physics, such as momentum dependent potentials, and (2) are required

for discussing reactions as well as structure. Examples of the latter (for reactions) stem from the

fact that the spacing of single-particle levels near the Fermi surface affects the many-body

density of states (o).

3.4 Near-Barrier Reaction Mechanisms

The study of nuclear reaction mechanisms has revealed a breadth of phenomena that have

subsequently stimulated advances in related areas of nuclear research, as well as in nuclear

. Fig. 3.18

How an effective mass affects the single-particle level spacing

m
k  b
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applications. The impetus to obtain a quantitative understanding of these phenomena has

motivated the development of increasingly sophisticated measurement technologies, described

elsewhere in this Handbook. Here, only an overview of the principal reactions of interest to, or

being investigated by, nuclear chemists is provided. Additional references can be found in

(Cerny 1974; Durand et al. 2001; Benenson et al. 2002).

Nuclear reaction mechanisms can be schematically separated into two general categories:

low-energy reactions that are strongly influenced by structure around the Fermi energy and

those at much higher energies where elementary nucleon-nucleon collisions become increas-
ingly important. In either case, the correlations existing within the (ground-state) projectile

and target can play determinative roles. This is true at low energy (alpha decay informs

about alpha-clustering in the low-density surface of heavy nuclei) as well as high energy

(where e!-induced knockout reactions indicate an overwhelming dominance of high relative-

momentum n-p pairs.)

As the model of nuclei composed of nucleons moving independently in a one-body

potential is one that is roughly 75% correct, this mean-field approach often provides a rather

good initial description of reactions. However, above energies commensurate with the depth
of the one-body potential, this potential has little meaning and the best starting point is to

consider collisions as sequences of individual nucleon-nucleon collisions. Often a distinction

between themean-field and nucleon-nucleon (N-N) regimes is made at bombarding energies of

about 20 MeV per projectile nucleon (20 MeV/A). Below this energy, individual nucleon-

nucleon (N-N) interactions lead to thermalization sufficiently quickly that no individual

nucleon has sufficient energy to escape the mean-field potential well. When this has been

achieved, a compound nucleus has been formed. As the relative collision energy increases, the

. Fig. 3.19

Effect of the omega-mass on the refocusing of single-particle levels near the Fermi surface. This

focusing is the result of the requirement that the potential be ‘‘pushed in’’ below the Fermi

surface and ‘‘pulled out’’ above the Fermi surface in order to reproduce both the position of

bound states and the scattering data (from Charity et al. 2007)
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energy dissipation process produces harder N-N collisions with scattered nucleon energies in

excess of the mean-field constraints, leading to prompt particle emission. The transition from

mean-field to N-N dominance as the bombarding energy increases is a continuous one,

mediated by the number of collisions that are not prohibited by the Pauli Principle (Pauli

blocking). The blocking of 2-body collisions is strong below the Fermi energy, thus leading to

surprisingly long mean-free paths at low energy, but weakens as the relative energy per nucleon

approaches the Fermi energy.

However, it must also be appreciated that in either regime (mean-field or N-N), the
correlations that exist in nuclei can be observed, sometimes as details in the extremes of

distributions, other times as an essential ingredient required to explain gross observations,

such as the a-particle emission in general.

This section is divided into several parts that focus on the near-barrier domain. The

following section addresses N-N dominated reactions. One final comment must be made in

an attempt to be forward looking. While the partition of reactions into low and high energy

(mean-field dominated or not) has been common in the past, future work must move beyond

this mental partition. As mentioned above, due to correlations in the nucleus, the ground state
is replete with high-energy nucleons, well above what would be expected from the Fermi-gas

model. It is actually this aspect, the correlations that exist in nuclei (for example as a function of

n/p asymmetry), that will be the focus of many reaction studies in the future.

3.4.1 Neutron Capture

Recent work at the lowest energies has generated detailed data on (n,x) reactions on nuclei

throughout the periodic table. Due to interest in advanced fuel cycles, as well as for possible
transmutation of reactor waste, the attention has focused on the actinide elements. (All of these

data can be found at the NNDC web site.) > Figure 3.20 shows both fission and capture cross

sections over six orders of magnitude in energy for 232Th. The three regions shown schemat-

ically in > Fig. 3.10 are clearly seen. The central region is dominated by pronounced reso-

nances, bordered on each side by smoothly varying cross sections. The resonances for heavy

nuclei have many-body wave functions, far too complicated to describe. (Only in the lightest

nuclei can these resonances be described by simple single-particle excitations.) At higher

energy, the number of these many-body resonances is so large per unit energy that they overlap
and no experimental resolution would be sufficient to resolve them. At energies lower than the

resonance region, one sees capture into the tail of the lowest-lying resonance, but with

a probability that increases with the increasing de Broglie wavelength of the neutron (with

decreasing energy).

In calculating the capture cross section for the lowest-energy neutrons, it is necessary to

consider the energy level width Gi and the natural lifetime ti of resonances. The uncertainty
principle gives

Gi ¼ !h=ti; ð3:58Þ

i.e., short lifetimes correspond to large level widths. For the general reaction A + a! [CN]!
B + b, the resonance cross section is given by the Breit–Wigner form (Breit and Wigner 1936):

s a; bð Þ ¼ pl!2wðIÞGaGb

Ea $ E0Þ2 þ G=2ð Þ2;
! ð3:59Þ
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where w(I) is a spin factor, a function of the spin of the CN (many-body) state,

wðIÞ ¼ 2ICN þ 1

2IA þ 1ð Þ 2Ia þ 1ð Þ ; ð3:60Þ

andG is the total width composed of the sum of the partial widthsG ¼
P

k Gk (the summation

index k includes the exit channel b). Ea is the projectile center-of-mass energy and E0 is the

energy of the resonant state.

At very low energies, comparable to the average thermal energy (3/2)kBT% 0.025 eV, (n,g)
is the only open channel. Thus the sum above has only one term, corresponding to gamma-ray

emission (b = g). These conditions, plus the realization that the neutron capture rate should

depend on the velocity v (this is basically a detailed balance argument, more neutrons per unit

time will impact the nucleus per unit time at high velocity than low), lead to the following

approximations:

Ea ¼ En % 0; so that En & E0 % &E0 and

Ga ¼ Gn / vnG and Gb ¼ Gg ¼ G:
ð3:61Þ

Furthermore, E0 is a constant close to zero (as the resonance is close to zero energy). Thus

the first term in the denominator is small compared to the second and, aside from terms that

do not depend strongly on energy, the Breit-Wigner formula – > Eq. (3.59) – reduces to

a simple 1/v dependence,

s n;gð Þ / pl!2wðIÞ
vnGG
G2

! "
% p!h2vn

mvnð Þ2
/ 1

vn
: ð3:62Þ

That is, for thermal neutrons, the lower the energy the higher the cross section.

. Fig. 3.20

The Th n-capture and fission cross sections from 1 eV to 1 MeV (from Aerts 2006)

γ
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As the neutron energy increases from thermal to higher energies, the cross section first falls

monotonically according to the 1/v law. In the vicinity of each resonance state, where En ! E0,

sharp spikes are observed in the cross section. When the state density (levels per unit energy)

times the mean intrinsic width rises to order one, states are no longer resolved. At this point,

the cross section is smoothly varying, of magnitude very roughly equal to the geometric value

sgeo = pR2.

While the actinide region has achieved much recent attention, (n,g) reactions throughout
the periodic table are important for the analytic tool of neutron activation. Cd is also
important for reactor control as the reaction 113Cd(n,g), with s = 2.0 " 104 b, is used to

control the reactor neutron flux and hence the multiplication factor k in reactor design. The

reaction 135Xe(n,g) with s = 2.6 " 106 b is a prominent fission-product poison that creates

problems in the operation of nuclear reactors by consuming neutrons unproductively.

One of the most important features that can be gleaned from the (n,g) data mentioned

above is the density of states in the excitation energy region near the binding energy of the

neutron. Upon capture, a neutron with thermal energy creates a nucleus with A + 1 nucleons

and E# = BN. Collecting data from throughout the periodic table has validated the dependences
expected for themany-body density of states from the Fermi-GasModel. In this model, which is

also needed to calculate the contribution to the heat capacity of the conduction electrons in

metals (the component that becomes dominant at very low temperatures), the excitation

energy (the thermodynamic internal energy often indicated byU) is proportional to the square

of the temperature. The reason for the square rather than the linear dependence in classical

gases is that not all the nucleons share in the excitation energy. The number of excited nucleons

increases in proportion to T, as does the average energy of each of these (excited) nucleons. The

same explanation holds for conduction electrons in metals at very low T.

E# ¼ aT 2: ð3:63Þ

As dU = + SdT ' PdV and U = E#, the entropy is

S ¼ dE#

dT

! "
¼ 2aT ; ð3:64Þ

and thus, using the Third Law, S = kB ln o (E∗), one would expect the density of levels to be

roughly

oL E#ð Þ ! Ce2aT ! Ce2
ffiffiffiffiffiffi
aE#

p
: ð3:65Þ

Refer to Huizenga and Moretto (1972) for a general discussion of level densities. Note that

the state density o enumerates each projection of the angular momentum while the level

density oL does not.

A more careful analysis of a two-component Fermi gas with spin and thermal energy

(U = E∗ ' Erot) yields (Bohr and Mottelson 1969)

oLðUÞ ¼ Ce2
ffiffiffiffiffi
aU

p .
U 2: ð3:66Þ

In practical usage the constants a and C are empirically-determined. Only experiments at low

E∗, like resonance counting, are sensitive to the prefactor C. Experiments in the region of

unresolved states are sensitive only to a relative change in the level density, i.e., oL(E∗ + D)/
oL(E∗), and thus only the level density parameter a can be extracted. It is the parameter a that
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relates the excitation energy to the nuclear temperature. This parameter is roughly propor-

tional to A but is reduced near closed shells. For near- ground-state nuclei away from closed

shells, the average value is near a ! (A/8) MeV"1 (> Fig. 3.21).

Themass number dependence is what one would expect from ‘‘particle-in-a-box logic,’’ i.e.,

the larger the box, the greater the number of single-particle levels per unit energy and the

greater the number of ways to distribute particles among these levels with a fixed total available

energy. However, independent-particle models predict that a should be closer to (A/12)
MeV"1. There are both macroscopic and microscopic explanations for this discrepancy.

From a macroscopic view, the nuclear surface, being less dense than the bulk, can accommo-

date more levels per nucleon. (Lower density, larger volume per particle, larger box, higher

density of single-particle states.) This approach was pioneered by Tōke and Swiatecki (1981).

These semiclassical formulations for the mass number A and deformation dependence of a

are extensively used in statistical decay models. From the microscopic point of view, the

augmentation of the density of states at low energy is explained as follows. In a single-particle

picture the excitation is ‘‘carried’’ by exciting nucleons to single-particle states (solutions to the
one-body potential problem). However, collective rotational bands can be built on any single-

particle structure (excitation). Although these states are in principle described in the single-

particle picture, they would lie at very high excitation energy in such amodel rather thanwhere

they really are – low energy. Thus the enhancement in the level density at low energy – the

a ! (A/8) MeV"1 – can be viewed as a consequence of collective excitations that in a pure

single-particle picture belong at very high energy. While the relocation of many-body states

fromhigh to low energy greatly increases theoL at low energy, it hardly affects the count at high

energy as the number of states increases exponentially.
Thus one would expect a to decrease (o increases, but the rate of increase slows) with

excitation. In the last decade this has been confirmed (Shlomo and Natowitz 1990). Modern

statistical model calculations (see > Sect. 3.5) now employ an excitation-energy-dependent a

that varies from about a = (A/7) MeV"1 at low energy to about a = (A/13) MeV"1 by the time

the total excitation energy reaches 100 MeV.

. Fig. 3.21

Level-density parameter a as a function of mass number. The solid line shows an average fit for

a = (A/7.9) MeV21 (from Huizenga and Moretto 1972)
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3.4.2 Nucleon and Heavy-Ion Elastic Scattering

3.4.2.1 Nucleon Elastic Scattering

Elastic scattering describes the simplest target-projectile interactions: specifically, those in

which the colliding nuclei experience only an angular deflection, but do not change their Z

or A composition or their energy state (> Fig. 3.22). For below-barrier projectile energies, the

differential cross section for elastic scattering is governed by the Rutherford (Coulomb)
scattering equation (>Eq. (3.45)). Rutherford employed this expression to deduce an upper

limit to the size of nuclei and, from the angular distribution, the atomic number of the scatterer

(Rutherford 1911). This same technique is in common use in analytical surface science work

and was notably applied to analyze the elemental composition of lunar samples in situ by

observing the scattering of alpha particles emitted from a radioactive source.

Below the Coulomb barrier only elastic and inelastic excitation by Coulomb excitation are

likely. Moving above the Coulomb barrier, various inelastic reaction channels compete with

each other and with elastic and Coulomb excitation for the partitioning of the income flux.
These channels interfere with one another, as do elastic fluxes from near and far-side scattering.
> Figure 3.23 shows all the existing data for nucleon scattering from Ca isotopes. (Shown are

the differential cross sections and the analyzing powers. The cited reference also contains spin-

rotation data.) Also shown in this figure are the Dispersive Optical Model fits that define the

potential, which in turn define the effective masses and occupancies of single-particle states.

The occupancy of single-particle states was extracted in the 1980s for stable nuclei using

(e,e0p) for several nuclei on the line of beta stability. Much recent effort has been spent in

attempting to do the same for nuclei off the line of stability and thus extract the asymmetry
dependence of spectroscopic factors. Spectroscopic factors expose the deviation from a simple

one-body description of the nuclear quantum problem. For example, if removal of a nucleon,

from a system with A nucleons and associated quantum numbers, leaves the A ! 1 system in

the ground state, the spectroscopic factor would be unity. However, as the real A (and A ! 1)

systems are strongly correlated, removal of a particle requires a ‘‘reorganization’’ of the others.

The spectroscopic factors can be roughly thought of as the fraction of the wave function (of

valence particles) that can be described by occupancy of a mean-field quantum solution.

Standard shell models predict spectroscopic strength less than one, but such calculations

. Fig. 3.22

Trajectories of projectiles impinging on a target for reactions below the barrier (left), where only

elastic scattering occurs and above the barrier (right), where the more central trajectories are

absorbed. As is seen, nuclear reactions will necessarily decrease the large angle fraction of

elastically scattered projectiles
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only capture that piece of the correlations contained in the space of the calculation. Particle

correlations (for example multiparticle hole strength required to describe the ground state)

beyond this very limited space would yield spectroscopic strength with even greater reductions

than those predicted by standard shell-model calculations.

Three experimental lines of approach have been used to study the evolution of spectro-
scopic strengthwith asymmetry: the dispersive optical model, nucleon knockout reactions, and

. Fig. 3.23

World data set (below 200 MeV) of n and p elastic scattering on Ca isotopes along with DOM fits

(From Charity et al. 2007)
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transfer reactions, the latter two projects using secondary beams. The results from these

experiments are as follows: there is a general trend that the spectroscopic strength decreases

(below the Fermi surface) for the minority (protons in this case) species. That is, for the

analysis of the Ca isotopes presented in > Fig. 3.23, the proton spectroscopic strength below
the Fermi surface decreases in going from 40Ca to 48Ca to 60Ca (60Ca being an extrapolation

from the fit), > Fig. 3.24. This trend is likely the result of increasing p-n correlations mediated

by the tensor force. The same trend is found in nucleon knockout reactions (Gade et al. 2004).

However, here the effect mentioned above is found to be much stronger than that found in the

DOM analysis. An additional difference is that the knockout work implies that this effect is

a function of binding energy (the greater the binding, the greater the correlations), while in the

dispersive optical model, the evolution is more subtle, depending on the parity of the levels (of

both neutrons and protons) engaging in the correlations. For example, in the DOM case, while
the occupancy of single-particle proton states decrease (increase) below (above) the Fermi

surface in going from 40Ca to 60Ca; there is little change in the neutron occupancy over this

same range of asymmetry. This latter trend, while in contrast to the knockout results, is in

agreement with the transfer studies (Lee et al. 2010). While the elucidation of this trend will be

a major focus of research in the coming decade, the present DOM analysis suggests that

nucleon correlations increase with the number of possible n-p pairs. (That is, protons become

more strongly correlated with increasing neutron number, while neutron correlations do not

increase with increasing neutron number.)

3.4.2.2 Heavy-Ion Elastic Scattering

Because of its diffractive nature (> Fig. 3.25), elastic scattering measurements provide a useful

probe of the nuclear potential near the nuclear surface, thus providing parameters for potential

models such as the optical model. Reaction cross sections for reactions induced by heavy ions

(HI) can also be determined from elastic scattering experiments (see superscript exp in the

. Fig. 3.24

Proton single-particle occupation probabilities in 40Ca (circles), 48Ca (squares), and 60Ca (triangles)

as deduced from a Dispersive Optical Model fit (Charity et al. 2007)
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following equation), since nuclear reactions preferentially remove elastic events at large

scattering angles (low ‘). Consequently, the ratio of the experimental elastic scattering cross
section dsE/dO to the Rutherford scattering cross section as a function of angle will decrease

strongly beyond some critical angle ycrit !30" (> Fig. 3.25). The reaction cross section sR can

be estimated from

sR ¼
ðp

ycrit

dsRuth
dO

dO$
ðp

ycrit

dsexpel

dO
dO% : ð3:67Þ

More precise results can be obtained with diffractive models (Frahn 1978), which

relate ‘max to the quarter point (or grazing) angle y1/4, the angle at which
sexpel yð Þ

"
sel yð Þ ¼ 0:25; ‘max ¼ !cot y1=4

"
2

# $
: The adherence of experiment to the Rutherford

values for scattering angles well below y1/4 makes elastic scattering a valuable technique for

cross-section normalizations in heavy-ion reaction studies. The strong Coulomb field for

heavy-ion collisions, proportional to ZpZt, has important nuclear consequences. Among

these are the Coulomb excitation of deformed nuclei to very high rotational levels and the

fission of heavy nuclei at relativistic projectile energies.

3.4.3 Inelastic Excitation

Inelastic scattering refers to collisions in which there is a change in the energy state(s) of the

target and/or projectile nuclei, but no change in Z and A. Such reactions are useful for

. Fig. 3.25

Left: Elastic scattering angular distribution for 12C + 16O, illustrating Fraunhofer scattering (Hiebert

and Garvey 1964). Right: 16O ions incident on a 208Pb target, showing a Fresnel scattering pattern

(Baker and McIntyre 1967). The disappearance of elastic events at large angles is due to the

absorption of lower ‘-waves
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investigating both the quantal and collective features of nuclear structure. Studies that employ

(p,p0) and (a,a0) reactions are particularly useful for measuring the spins and parities

of particle states in stable nuclei. In > Fig. 3.26 the spectrum of protons observed in the 20Ne

(p,p0)20Ne reaction is shown as an example.

Coulomb excitation is the process by which nuclear excitation occurs without a hard nuclear

reaction. Basically, the energy for excitation is extracted from the time-varying Coulomb field
as a target and projectile pass one another. This reaction has had a significant rebirth with the

availability of fast (>50 MeV/A) heavy-ion beams. The basic process (> Fig. 3.27) is strongly

energy-dependent (> Fig. 3.28) and allows for the extraction of the reducedmatrix element for

quadrupole excitation (from the probability of exciting the first 2+ state) as well as studying

collective giant resonances. The revival is due to the potential for making these measurements

on fast (off b-stability) secondary radioactive beams (Glasmacher 1998).

In the case of the excitation of the first 2+ state of even-even nuclei, in addition to

determination of the energy of this low-lying state, one also measures the reduced matrix
element B(E2) from the yield of g-rays depopulating this state. As the beam energy is increased,

the probability for excitation of large-scale collective motion (giant resonances) increases

(> Fig. 3.28). Fast-beam Coulomb excitation has been a fruitful area of research, because

low-intensity secondary beams can be used since cross sections can be significant fractions

of a barn. The focus here will be on just one of the interesting findings of this productive

research area.
> Figure 3.29 shows the energy of the 21

+ state for silicon, sulfur, and argon isotopes,

Z = 14, 16, 18, respectively. (The trailing subscript is used to indicate which level of a specific
spin and parity to which one is referring. Thus 02

+ is the second 0+ state in that nucleus.) First,

focus on the behavior atN = 20. The relatively high energy of the 21
+ state in Si and S indicates

that N = 20 is in fact magic for the corresponding proton numbers. Shifting the focus to the

. Fig. 3.26

Spectrum of protons observed in the 20Ne(p,p0) reaction. Elastically scattered protons appear in

the 0+ peak at 0.0 MeV near channel 1,100. Inelastic events populate the excited states of 20Ne

(Courtesy of E. J. Stephenson, IUCF)
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region ofN = 28, one finds that the same cannot be said, i.e.,N = 28 is seemingly not magic for

these very neutron-rich species. The B(E2) values support this assertion. This loss of
‘‘magicity’’ to the ‘‘South-East’’ of stability on the chart of the nuclides is called the ‘‘island

of inversion.’’ More generally, it has been appreciated that the values, or strengths, of the

‘‘magic’’ numbers can change with unusual n/p ratios. This shifting magicity can have universal

consequences. For example, it has been postulated that the inversion region mentioned above

determines the 48Ca/46Ca abundance ratio in Nature (Sorlin et al. 1993).

Inelastic excitation via a-particles (i.e., a,a0) has provided the bulk of the data on the highly
collective giant monopole resonance, often called the ‘‘breathing mode.’’ Data of this type

(> Fig. 3.30) have been used to extract the nuclear incompressibility of finite nuclei, and with
the aid of models, the incompressibility of symmetric matter (see > Sect. 3.7).

With greater overlap of the two nuclear potentials, additional channels open up that permit

transfer of one or more nucleons, or direct reactions (Austern 1970). Classic examples of direct

reactions are one-nucleon transfer, or stripping, and pickup reactions. Stripping is the transfer

of a single nucleon from the projectile to the target, for example a (d,p) reaction. Pickup is the

. Fig. 3.27

Schematic picture of the first-order Coulomb excitation of a nucleus from an initial state to a final

bound state and its subsequent g-decay

γ

. Fig. 3.28

Calculated cross sections for Coulomb excitation of 40S in the first excited state (2+), the giant

dipole resonance (GDR), and the giant quadrupole resonance (GQR) in 40S using a 40S beam

incident on Au, versus the beam energy. The calculation assumes a minimum impact parameter

of 16 fm (From Glasmacher 1998)
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reverse reaction, i.e., transfer of a nucleon from target to projectile, as in a (p,d) reaction. At low

beam energies, the higher probability for neutron transfer relative to proton transfer demon-

strates the charge polarizability that the colliding nuclei experience as they approach one

another. This is shown schematically in > Fig. 3.31.

Direct reactions need not be simple one-step processes. The likelihood of a one-step

process improves if the momentum transfer q is close to the angular momentum of the

transferred nucleon divided by the nuclear radius at which the transfer occurs,

q ! kin " koutj j # ‘=R: ð3:68Þ

If this matching condition is satisfied, the cross sections can be compared to one-step
reaction models, such as the Distorted-Wave Born Approximation (DWBA), from which

spectroscopic information can be extracted. The common DWBA codes are DWUCK

and PTOLEMY.

. Fig. 3.29

Excitation energies of the first excited 2+ states in argon, sulfur, and silicon plotted versus the

neutron number N. Measured values (solid circles) are compared to shell-model calculations with

a full and a truncated set basis states
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Stripping and pickup studies with heavy radioactive (secondary) beams on light targets are

beginning to provide structure data on nuclei far-removed from stability. Furthermore, since the
(d,p) reaction is the analog of neutron capture (n,g), it provides an important surrogate pathway

for studying nuclear mass buildup in r-process nucleosynthesis (see >Chap. 12 in Vol. 2).

Using the d A
ZX;

Aþ1
Z X

! "
p reaction, reverse kinematics reactions with beams of neutron-rich

radioactive nuclei make it possible to study the structure and neutron-capture probabilities of

nuclei nearer the neutron-drip line (neutron separation energy near zero).

A similar tool that is useful for studying mirror nuclei and isobaric analog states is the

charge-transfer reaction of the type (p,n) or (n,p), the nuclear reaction equivalent of beta-decay.

Mirror nuclei are pairs of isobars that can be interconverted by exchanging a neutron and
a proton, e.g., 157 N8 and

15
8 O7. An isobaric analog state of nucleus ZþN

Z XN is also a state in the

. Fig. 3.31

Schematic diagram of a (d,p) transfer reaction. Notice that the deuteron is polarized due to

mutual Coulomb repulsion with the target. For a (p,d) pick-up reaction the arrows should be

reversed

. Fig. 3.30

Left: Spectra for the giant monopole and isoscalar dipole resonances obtained in (a,a0)

measurements and right: The extracted nuclear matter (nm) incompressibility constant Knm
(Figure courtesy, P. H. Youngblood, Texas A&M University)
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nucleus for which nucleonic wave functions are the same, as are the masses after correction

for the Coulomb energy and the neutron-proton mass difference. One practical application of

this process has been the measurement of the 37Cl(p,n)37Ar and 71Ga(p,n)71Ge cross sections

that are related to understanding measurements of the flux of solar neutrinos (Bowles and

Gavron 1993).

Numerous theoretical models have been employed in the analysis of direct reactions at low

energies. Among the most prominent of these is the coupled-channels approach, which

incorporates the quantum structure of the colliding nucleus and its product (Tamura 1965;
Dasso and Landowne 1987). The coupled channels can be either inelastic or transfer modes.

The coupled-channels model has proven to be among the most successful approaches for

obtaining quantitative understanding of direct-reaction probabilities. In addition, it has served

as a valuable guide in the interpretation of subbarrier fusion reactions (Broglia et al. 1983).

In heavy-ion reactions, the more general term quasielastic scattering is frequently applied to

reactions at the nuclear surface. This more inclusive definition covers not only the above

mechanisms, but also multiple-nucleon-transfer reactions. In these events, two or more

nucleons may be transferred, producing a more diverse array of reaction products. The
multiple-nucleon-transfer mechanism can produce nuclei relatively far away from the line of

beta stability. Consider the example,

64
30Zn

48
20Ca;

45
21Sc

! "
67
29Cu ; ð3:69Þ

in which four neutrons are transferred from 48Ca to 64Zn and one proton is transferred in the

reverse direction. While quantum and collective structure effects play an important role in

inelastic scattering and few-nucleon transfer reactions, the primary products may also be
formed with significant excitation energies. If the excitation energy exceeds particle binding

energies, then secondary decay via statistical emission alters the primary exit channel nucleus.

3.4.4 Nucleon Knockout Reactions

Nucleon knockout reactions have also been the focus of considerable recent effort (both

knockout and Coulomb excitation are dealt with in Gade et al. 2004 and Gade and Glasmacher

2008). One famous example of the power of nucleon knockout reactions using secondary

beams is that of 11Li, an extremely neutron-rich nucleus. It is thought to have a neutron halo,

which would explain its large reaction cross section (Tanihata et al. 1985, > Fig. 3.32). With
a half-life of 8.7 ms, 11Li can be produced by fragmentation of a heavier species (usually 18O),

separated in flight from other fragmentation products and made into an almost pure beam.

Directing this beam toward a second target, a secondary reaction measurement can be

performed. Neutron knockout from 11Li forms 10Li, which has no bound states so that the

ultimate exit channel is 9Li + 2n. Detecting the 9Li and a neutron allows for the reconstruction

of the 10Li momentum distribution after the knockout of the first neutron, > Fig. 3.33. If the

target is a spectator, the 10Li momentum distribution is the complement of the momentum

distribution of the removed nucleon. Thus, with the caveats concerning the reaction mecha-
nism, the knockout reaction is a measure of the momentum wave function (as opposed to the

more standard position representation) of one of the loosely bound nucleons. These data

suggest that these valence neutrons are a mixture of 2s1/2 and 1p1/2 components. Note that

the higher the ‘ value, the broader the (linear) momentum distribution. The admixture of

the second s state might seem surprising, as this level usually does not start filling until N = 14.
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. Fig. 3.32

Schematic view of the 11Li nucleus, in which the two valence neutrons are in orbits much larger

than the 9Li core (Tanihata et al. 1985)

. Fig. 3.33

Left: 10Li residue momentum distributions measured following neutron removal from 11Li on 12C

at 287 MeV/A. Right: Angular correlations of the decay neutrons measured relative to an axis

defined by the 10Li recoil direction as shown in the inset. The points are the experimental

data and the histogram is a reconstruction corrected for experimental resolution and

acceptance effects. Note the strong forward–backward asymmetry, which reflects interference

of the ‘ = 0 and 1 final states

s

q

s
q

q

186 3 Nuclear Reactions



Its contribution for N = 8 (in 11Li) is thought to be a consequence of the tensor interaction

between neutrons and protons (Myo et al. 2007).

Knockout reactions, such as (p,a), (g,a), and (e,e0a) in evenN = Z (alpha particle) nuclei are

also especially important as they provide evidence for alpha particle clustering in nuclei. At low

energies, such reactions, for example, 19F(p,a)16O and 28Si(g,a)24Mg, which reduce the mass of

the heavy partner, are important competitors to the synthesis pathways leading to the forma-

tion of elements just below 56Fe in nova bursts.

3.4.5 Mean-Field-Dominated HI Reactions

3.4.5.1 Impact Parameter Dictates the Reaction Channel

Nuclear chemists have been particularly active in the study of reactions between heavy

ions (HI) and heavy nuclei. The interest can be traced to the fact that all heavy elements with

Z > 101 have been made with HI fusion–evaporation reactions (Loveland 2007). With
increasing mass, the distinct quantal features become less important. Classical or quasiclassical

reaction models become reasonable when the de Broglie wavelength becomes significantly

smaller than nuclear dimensions. However, this condition is not satisfied in HI reactions with

energies just exceeding the Coulomb barriers. Thus, quantal descriptions via a Time-

Dependent Hartree-Fock (TDHF) approach (Bonche et al. 1976) or some form of quantum

molecular dynamics (Feldmeier and Schnack 2000) are needed. In practice, semiclassical

methods are usually invoked to describe the range of mechanisms observed at bombarding

energies near the Coulomb barrier.
As the energy is increased well above the Coulomb barrier, classical concepts become more

applicable and a partition of the impact-parameter space into different reaction types becomes

reasonable. > Figures 3.34 and > 3.35 illustrate the approximate relationship between reaction

mechanism and impact parameter b, or ‘-wave, for collisions between two complex nuclei at

energies of more than a few MeV/A above the barrier.

The classification scheme in > Fig. 3.35 becomes simplified for lighter projectiles, for

which fusion and simple surface reactions are the principal exit channels at low relative

bombarding energies. For very heavy projectiles, the damped-collision (deep-inelastic)

. Fig. 3.34

Reaction mechanisms classified schematically according to relative impact parameter b (‘-wave).

Large values of b are classified as peripheral collisions and small values as central collisions

b

Nuclear Reactions 3 187



mechanism is dominant as the mutual Coulomb field between the colliding particles becomes

very large and inhibits fusion.

In the following subsections, the various mechanisms are discussed in order of decreasing

impact parameter, beginning with elastic scattering and finishing with complete fusion.

3.4.5.2 Surface Reactions: Inelastic Scattering and Nucleon Transfer

For impact parameters with trajectories that scatter near the grazing angle, the separation

between the colliding nuclei becomes sufficiently small that they begin to sample the attractive

component of the nuclear potential. Reactions can then occur at the nuclear surface (leading to

two-body final states) that proceed on a time scale comparable to the nuclear transit time.

Interactions in this category usually involve excitation of low-lying modes in one or both of the

colliding species and are particularly valuable for studying nuclear structure. Experimentally,

. Fig. 3.35

Distribution of partial cross sections s‘ as a function of angular momentum quantum number ‘,

decomposed according to reaction mechanism. Left panel is for light-ion-induced reactions (H,

He) and right panel for heavy-ion reactions

l

sl

l
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. Fig. 3.36

Illustration of a damped (deep inelastic) collision. The projectile trajectory is shown by the heavy

curve and the extension of the original Coulomb-scattering trajectory by dashed lines. During the

rotation angle of the dinuclear complex, Du = uel 2 uexp, a neck is formed between the reacting

species, through which nucleon exchange and energy dissipation proceed

π q q
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reactions at the nuclear surface are distinguished by: (1) angular distributions that peak in the

forward direction or near the grazing angle, and (2) distinct spectral peaks, corresponding to

energy states in the product nuclei.

3.4.5.3 Damped Collisions

At intermediate impact parameters, the nuclear overlap between target and projectile nuclei
becomes sufficiently strong that the nuclear force may compete favorably with the repulsive

Coulomb and centrifugal forces. When these competing forces approximately balance one

another, it is possible to create short-lived dinuclear complexes, or ‘‘nuclear molecules’’

(> Fig. 3.36). These temporal species survive long enough to undergo a partial rotation and

significant energy dissipation before undergoing binary breakup. Based on this behavior, these

reactions are classified as damped or dissipative collisions, DC. The importance of the damped-

collision mechanism relative to the total reaction cross section depends on the charge product

ZpZt. If the nuclear charge product is small, the DC cross section is also small. For collisions
between very heavy nuclei, damped collisions may consume nearly the entire nuclear reaction

cross section (Schröder and Huizenga 1977; Tōke and Schröder 1992). While other processes

become significant with increasing energy, for collisions between the heaviest nuclei, the bulk

of the reaction cross section remains of this dissipative type up to several tens of MeV/A

(Baldwin et al. 1995).

During the contact time, a neck forms between the reacting nuclei, through which

statistical diffusion of neutrons and protons occurs in both directions (Planeta et al. 1990).

It is this nucleon-exchange process that mediates the dissipation of radial kinetic energy into
internal excitation energy. At the same time, extensive nucleon diffusion generates a broad

distribution in both charge and mass around the projectile and target values. Thus the

distinction between damped collisions and fission is that the product charge and mass

distributions are concentrated near those of the projectile and target in the former case, but

which for the latter are symmetric, near the total charge and mass divided by two (for all but

the lowest excitation energies).

The angular and energy-damping features of the damped-collision mechanism are best illus-

trated by means of a Wilczynski plot (Wilczynski et al. 1973), shown in > Fig. 3.37. This type of
plot summarizes the probability for observing a projectile-like fragment in the 40Ar + 232Th

reaction as a function of scattering angle and total kinetic energy. Here the most energetic

nonelastic fragments form a peak near the grazing angle, as mentioned in> Sect. 3.4.5.1. As the

energy damping increases, a ridge of events develops near the grazing angle, corresponding to

quasi-elastic surface reactions. The broad band that appears for the largest kinetic energies

defines the damped collision events. The kinetic energies of the fully damped fragments are

consistent with fission fragment kinetic energy systematics (Viola et al. 1985). However, the

damped-collision angular distribution is peaked near the grazing angle, unlike fission, which is
symmetric about 90! in the center-of-mass system.

Theoretical calculations indicate that the rotation angle Dy (> Fig. 3.36) depends on the

impact parameter. Smaller impact parameters lead to greater target and projectile overlap and

thus longer rotation times, enhancing the degree of nucleon transfer and energy dissipation.

Analysis of the data suggests that for fully damped events, the rotation time is about 10"22 s.

The dissipated energy appears in the product nuclei as excitation energy. The frictional forces

during contact also impart sizeable angular momenta to the primary fragments. These excited,

Nuclear Reactions 3 189



high-spin product nuclei subsequently cool by secondary particle emission to form the
observed fragment Z and A distributions.

Because of the statistical nature of nucleon exchange, the nuclide distribution of the

products extends over a very broad range of projectile-like and target-like fragments.

This has made possible the identification of a large number of exotic nuclei that have

significantly expanded knowledge of nuclear properties. By utilizing similar reactions at higher

projectile energies (> Fig. 3.38), it becomes possible to create beams of radioactive nuclei for

further exploration of important problems in nuclear reactions, structure, and nuclear

astrophysics.
In order to explain the dissipation of large amounts of relative kinetic energy into internal

excitation and shape degrees of freedom, microscopic transport theories based on statistical

nucleon exchange have proven to be of broadest utility. Based upon a master-equation

approach (Nörenberg et al. 1974, 1976; Randrup 1978), the macroscopic variables are

accounted for qualitatively via a Fokker–Planck equation in which a drift coefficient describes

the net flow of nucleons across the target-projectile interface and a diffusion coefficient that

accounts for nuclear friction effects.

3.4.5.4 Composite-Nucleus Formation

Total amalgamation of target and projectile corresponds to complete fusion (CF). If the composite

completely samples the mononuclear phase space, a compound nucleus (CN) is formed.

If the barrier is robust, as it is for HI fusion, Wentzel–Kramers–Brillouin (WKB) logic can

be used to generate the transmission coefficient (Gamow penetration factor) as a function of

the energy of relative motion e (as it is for spontaneous alpha-decay),

. Fig. 3.37

Double-differential cross section (indicated on plot); contours ds2/dV dE for the 10MeV/A and
40Ar + 232Th reaction plotted versus scattering angle and kinetic energy of projectile-like

fragment (Wilczynski et al. 1973). The grazing angle is near 40! in this reaction
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Here e is the energy of relativemotion. In the first expression, the generalWKB result is given in

terms of the real potential V(r) and the classical inner and outer turning points, Rin and Rout,

respectively. The second quantity gives the result if the potential is approximated by an inverted

harmonic-oscillator potential of frequency o. RB is the intranuclear separation distance at the
peak of the barrier.)

From the expression for the transmission coefficient T‘ it is seen that for sufficiently high

angular momenta, the Coulomb plus centrifugal terms may exceed the available beam energy,

leading to an upper limit to the angular momentum, ‘max, that can contribute to fusion (Bass

1974). For slightly higher ‘-waves this limitation may produce incomplete fusion reactions in

which only a part of the projectile is captured by the target.

For heavy-ion reactions below the average ‘-value, fusion saturates as the energy is lowered
yielding a transmission coefficient T‘ and cross section nearly independent of ‘ (Vandenbosch
1992). In this case, the fusion cross section with a center-of-mass energy E, reduces to

sCF ¼
R2
B!ho
2E

exp $ 2p
!ho

VC $ Eð Þ
" #

: ð3:71Þ

. Fig. 3.38

Distribution of nuclides produced in the 75 MeV/A 78Kr + 58Ni reaction. Atomic number increases

along the vertical axis and mass number along the horizontal axis (From Pfaff et al. 1996)
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This expression, which predicts an asymptotic slope in energy of ln[Es(E)] = 2p/ћo,
describes fusion excitation functions at low energy quite well. For deformed nuclei, RB will

depend on the relative orientation of the colliding pair, resulting in a distribution of effective

fusion barriers. As a result, not only is it possible to observe fusion below the mean fusion

barrier, but it is also possible to obtain information of the effective distribution of barriers

contributing to fusion (Dasgupta et al. 1998). At subbarrier energies, coupling to inelastic

channels can be considered as a ‘‘doorway’’ to fusion and thus coupling of such channels to the
entrance channel can also be an important consideration (Broglia et al. 1983).

In some heavy-ion reactions a small fraction of the projectile mass may escape capture and

proceed forward with the beammomentum. These reactions are called incomplete fusion (ICF)

ormassive transfer. The result of such incomplete fusion is, aside from the uncaptured fragment,

an excited nucleus that is fully internally equilibrated and thus its decay is suitably treated by

statistical models of compound nucleus decay, the subject dealt with in the next major section.

A special case of CN formation occurs when the capture proceeds through an isolated

resonance reaction. Such reactions are also of fundamental importance to the nucleosynthesis
pathways that form the elements beyond helium (see>Chap. 12 in Vol. 2). The classic example

here is the 3a ! 12C reaction
4Heþ4He!8Be; Q ¼ #92 keV ð3:72Þ

8Beþ4He!12C!12Cþ g; Q ¼ 7:367 MeV: ð3:73Þ

There are only three levels of 12C below E& = 10 MeV. One of these levels occurs at 7.654

MeV, just above theQ-value for the 8Be(a,g) reaction (also a resonance reaction). This level was
predicted by F. Hoyle before it was observed, based on the fact that C (and life) exists. It is the

resonance with this state that magnifies the 3a! 12C cross section and provides the gateway to

synthesis of heavier elements. More detailed discussions of resonance and neutron-capture

reactions in astrophysics can be found in (Rolfs and Rodney 1988).

The two major decay modes of CN are light-particle emission and fission. The modeling of
these decay modes is treated in the next section. In closing this section, it is pointed out that the

spectra of light particles (of energy e and type t emitted from a CN P(et)) is Maxwell–

Boltzmann (like) in form, up-shifted in energy by a Coulomb barrier height (BC) if the ejectile

is charged,

P etð Þ / ext e
# et#BCð Þ=T : ð3:74Þ

The variable power x on the exponential prefactor (which determines the spectral rise at low

energy) arises from: (a) statistical shape variations which affect the actual barriers, (b) amixture

of ‘‘volume’’ and ‘‘surface’’ emission, (c) the emission of more complex nuclei that subse-

quently decay into the channel of interest, and (d) quantum penetration. The first factor is the
most important, and thus in fitting spectra, often a distribution of BC values is required.

3.5 Statistical Decay

3.5.1 Preliminaries

Standard statistical-model treatments of compound nucleus decay are predicated on a time-

scale separation between the formation of the CN and the time scales for simple (mostly

single-particle) decay modes, as well as the massively collective decay process of fission. With
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this decoupling of the entrance channel from the exit channel (except for conserved quantities),

the CN decays statistically; that is, the decay samples all the phase space allowed by conserva-

tion laws (Ericson et al. 1963). The problem is always the identification and quantification of

this phase space. As almost all reactions proceed through binary or sequences of binary steps,

the rates of decays will be determined by the critical configurations of a binary nature. (The

case of multifragmentation is thought to be an exception to this statement: see the end of this

section and > Sect. 3.7.5.)

There have been two successful approaches to this quantification: the Hauser–Feshbach
(HF) and the transition-state (TS) treatments. The former was historically used to treat light-

particle emission and the latter to treat fission. Modern codes have extended HF to treat

ejectiles as heavy as carbon and with the aid of calculations of conditional barriers, transition-

state theory has been used to treat binary divisions with mass asymmetry in the decay channel

as a continuous variable.

3.5.2 The Hauser–Feshbach Treatment of Particle Emission

The logic employed in the HF treatment (Hauser and Feshbach 1952), as well as the earlier WE

treatment (Weisskopf and Ewing 1940) the which lacks proper consideration of angular

momentum coupling, is that the one-way decay rate would be equal to the reverse rate if

true reactant-product equilibrium were attained. The one way, state-to-state probability for

a fixed ‘-value and energy is readily given by the transmission through the optical model

potential, T(e). This rate would be equal, bymicroscopic reversibility (mechanics is time-reversal

invariant), to the outgoing state-to-state probability. Thus an observable rate is simply the

microscopic (state-to-state) rate times the density of final states. The latter reflects the number
of possible final microstates within an experimental window. This window is naturally quantized

by angularmomentum and is quantized in energy either by the discrete structure of the quantum

system or, at modest excitation energy, by the number of overlapping states in an energy bite

determined by an experimental energy resolution, i.e., odE, where o is the state density.

While the forward and backward rates would be equal and thus cancel, giving no net rate in

an imagined equilibrium, in the kinetic process the net-rate (unconfined to a box and thus with

no backward rate) is equal to the outgoing one-way rate. Thus the rate of emission of nucleons

or clusters in any specified state from an initial parent level of excitation energy E i and spin Ji is
the result of a sum over the product intrinsic state-to-state rates and final-state level densities,

where the sum is over: (a) the possible ‘-values (inner sum >Eq. (3.76)) and (b) the so called

‘‘channel spin’’ S = j + s, where j and s are the intrinsic spin of the residual and ejectile spin

(outer sum). With consideration of the possible spin combinations, the HF equation for the

emission rate Ri!f of a particle of type t energy et and separation energy St, in terms of the

inverse cross section sf!i and the density of levels of the parenti and the daughterf is,

Ri!f Ei; Ji ! j; sð ÞdE ¼ 2l!2

!h
sf!i Ei; Jið Þ 2s þ 1ð Þ 2j þ 1ð Þ

2Ji þ 1ð Þ

! "
oL

f Ef ; jð Þ
oL

i Ei; Jið Þ

! "
; ð3:75Þ

with

sf!i Ei; Jið Þ ¼ pl!2
XS¼jþs

S¼jj%sj

X‘¼JiþS

‘¼jJi%Sj

2Ji þ 1

2s þ 1ð Þ 2j þ 1ð Þ

! "
T t

‘ eð Þ; ð3:76Þ

and
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Ef ¼ Ei " St " et: ð3:77Þ

In order to execute this logic, the following must be known: (1) the ejectile spin, mass, and

separation energy and (2) the density of levels (as a function of excitation and angular
momentum) of the parent (i) and daughter (f). As the latter has lower mass (and perhaps

charge), as well as excitation energy, its level density will be smaller than that of the parent.

Monte Carlo codes are available that execute this logic event-wise, removing energy in each

step until particle emission can no longer occur. Some codes seamlessly switch to gamma

emission until all products are in their ground states. Since the HF equations treat ejectiles as

objects with only one quantum option (there is no ejectile density of final levels), each level in

a complex ejectile must be treated as a separate channel. Some modern codes (e.g., GEMINI)

have used this logic to treat complex ejectiles (level by level) as heavy as C isotopes (Charity
et al. 2001). Such codes are indispensable for calculating decays initiated by the low-energy

accelerators located in hospitals for isotope production, for evaluating concepts for transmu-

tation of nuclear reactor waste, and as afterburners for treating the statistical decay that

invariably results after fast (nonstatistical) processes originating in high-energy collisions,

including those initiated by cosmic rays.

3.5.3 The Transition-State Treatment of CN Decay

In the 1930s Eyring, Polanyi, and Wigner developed transition state (TS) theory, which is

a computationally efficient way to compute classical reaction rates without integrating trajec-

tories. The main idea is to define a dividing surface that partitions the configuration space into

reactant and product sectors and compute the rate from the directional phase-space flux

through this surface. One complication (below) is that the dividing surface must be such

that it is not recrossed. The transition-state logic was almost immediately applied to fission by

Bohr and Wheeler (1939). (See Vandenbosch and Huizenga (1973) or Wagemans (2000) for
a detailed presentation of fission data and theory.) In this case, the absolute decay width (at an

excitation energy above the ground state E% = E " Vgd.st.) comes from an integral over the

density of levels from the point where the energy in the decay channel e is zero (i.e., maximal

energy to be dispersed among the nondecay degrees of freedom and thus maximal level

density) to the maximum channel energy (where there is a minimum of energy in the

coordinates other than the decay channel),

Gf
BW ¼ 1

2poL
mn E%ð Þ

! " ðE%"Bf

e¼0

oL
sp E% " Bf " eð Þ de: ð3:78Þ

The critical aspect in executing the TS logic is consideration of how the density of levels of

the mononuclear (spherical or marginally deformed) parent oL
mn

$ %
grows with excitation

energy as compared to growth of the density of levels of the highly deformed saddle-point

shape oL
sp

& '
. The logic employed in statistical model codes is to calculate the level-density

parameter via a physical expansion, increasing its value in proportion to the surface area.

Following the prescription of Ignatyuk et al. (1975), Reisdorf (1981), and Tōke and Swiatecki

(1982), the level density parameter a (see>Eq. (3.66)) can be written as a physical Liquid Drop

Model-like expansion in terms of a deformation parameter q. In such an expansion, one has
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constants for the volume cv and surface cs contributions, where the latter is multiplied by the

surface area at deformation q relative to that of a sphere (Bs(q)),

aðqÞ # cv þ csA
2=3BsðqÞ: ð3:79Þ

The complication that the transition state cannot be recrossed was dealt with theoretically

by Kramers (1940), where the fissionwidth is reduced relative to the Bohr–Wheeler estimate by

saddle recrossing. As the recrossing probability increases with friction, the reduced fission

probability can be cast in terms of the friction coefficient g,

GKram
f ¼ 1þ g2

! "1=2 & g
h i

GBW
f ð3:80Þ

The importance of this correction is still being debated (McCalla and Lestone 2008).

However, it is included in most modern decay codes.

In the early 1980s data on so-called complex fragment (CF) statistical emission became
available. Complex fragments are usually defined as those with atomic numbers from three to

one half the total mass of the system. The first data, shown in > Fig. 3.39, demonstrated the

statistical nature of the emission and were used to extract conditional barriers; that is, barriers

that correspond to the minimum energy required to pass from the CN system to an exit

channel of fixed mass asymmetry. A general TS theory for treating CF emission was presented

by Moretto (1975). This theory exchanges the problem of calculating transmission coefficients

(needed for HF) with calculating the barrier and density of levels for the conditional barriers,

i.e., barriers with frozen mass asymmetry. As mentioned above, the best modern codes allow
for either scheme to be used.

3.5.4 The Density of States of Highly Excited Nuclei

A complete presentation of the issues related to the properties of what are often called ‘‘hot

nuclei’’ is given in Shlomo and Kolomietz (2004). One of the assumptions underlying both of

the standard treatments is that the reverse process can be considered as capture onto an object
that bears significant resemblance to the ground state of the daughter. The macroscopic

forward (decay rate) is then just the microscopic rate multiplied by the appropriate density

of states. However, at high excitation energy nuclei will expand, with some reduction of the

central density and the surface becoming far more extended. This poses two problems. First,

the OMmight not provide correct transmission coefficients, as the excited objects of relevance

have different correlations than those of the ground state. The second problem is that even for

uncorrelated fermion systems, the relevant density of states should be for the extended object.

From a schematic model the qualitative effects of expansion are shown in > Fig. 3.40
(Sobotka et al. 2004). Calculations based on realistic effective Hamiltonians (Samaddar et al.

2007, 2008) yield similar results. With increasing excitation energy per nucleon, the equilibrium

state (which for an isolated system is that with the maximum entropy) is one with reduced

density. This effect increases the level-density parameter (see dotted line in > Fig. 3.40, right

hand side). Many-body theory (Prakash et al. 1983) has provided insight into how the effective

mass terms evolve with density and excitation energy. In a local-density approximation (i.e., the

level density parameter a can be calculated as the sum of contributions from different density

regions of a nucleus), the k-mass (mk, see >Eq. (3.57)) increases from 0.7 to 1 with decreasing
density and the peak of the o-mass (mo), at the nuclear surface is removed with excitation

energy (see > Sect. 3.3.3). The effect of the k-mass is to suppress a at low excitation but to
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increase it with increasing excitation. This evolution provides positive feedback to expansion,

feedback that is active over several MeV/A of excitation. On the other hand, the collapse of the

o-mass at the nuclear surface (whichwas responsible for increasing a at low excitation) drives a
down over the first few MeV/A of excitation energy. The collective effect is a variation of the

density of states that yields a ‘‘Caloric Curve,’’ E∗(T), with a pseudo plateau. While not a phase

transition in the classical sense, these effects represent a transition from a correlated fermion

system to one that more closely resembles a hot, but noninteracting Fermi gas.

3.5.5 Thermodynamic Models for Multifragmentation

Multifragmentation is thought to involve a nearly simultaneous breakup of the nucleus into

many fragments. This image of the process suggests that the relevant phase space is that

. Fig. 3.39

Left: Excitation functions for complex fragment evaporation from a 3He-induced reaction

(Mcmahan et al. 1987). Right: Mass distribution generated from the decay of A ! 110 systems at

both low and high angular momenta. The inset shows the finite-ranged Droplet Model

conditional-barrier distributions (Sobotka et al. 1987)
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corresponding to any number of fragments in the exit channel (rather than just two as in the

HF and TS treatments). Statistical models of this phase space have been generated based on
fixed energy and particle number – microcanonical ensemble, ‘Gross (1990) and Bondorf et al.

(1985); fixed temperature and particle number – canonical, Das et al. (2005), and fixed

temperature and chemical potential – grand-canonical, Randrup and Koonin (1981). As

would be expected, such models predict a liquid–gas phase transition for large, uncharged

nuclear systems, as discussed in> Sect. 3.7. These models do reproduce a considerable amount

of data. Having done so, it has been the hope that manifestations of the infinite-system phase

transition in a finite system is also represented. To give the flavor of these approaches, the

canonical prescription (for one particle type) is presented here.
The first assumption is that the partition function Q is the product of the individual

partition functions for the component parts, corrected for indistinguishability,

QA ¼
XY

i

1

ni!

Vfree

L

! "ni

qið Þni ; ð3:81Þ

where the sum is over all possible partitions, the product is over the fragments in that partition,

ni is the number of a given fragment type (i) in this partition, qi is internal partition function

for cluster type i, and the factor in parenthesis is the free volume measured in units of the

thermal box size

L ¼ l3th ¼
h

2pmTð Þ1=2

" #3

: ð3:82Þ

The average number of clusters of type i is

nih i ¼ Vfree

Li
qi

! "
QA$i

QA
: ð3:83Þ

The partition function (for A particles) can be readily calculated from a recursion relation

(Das et al. 2005). The result of particle number conservation in each partition is,

. Fig. 3.40

Left: The mononuclear excess entropy (above that for a nonexpanded system) as a function of

a self-similar expansion coordinate (inverse of scaled radius parameter, i.e., C = 1 no expansion),

for unit (MeV) steps in the excitation energy per nucleon e. Right: The level density parameter

with expansion but m*/m = 1 (dotted), considering both expansion and the evolution of mk

(dashed) and expansion with both mk and mv (solid) are shown (Sobotka et al. 2004)
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QA ¼ 1

A

XA

k¼1

k
Vfree

Lk
qk

! "
QA"k : ð3:84Þ

The execution of this logic then comes down to specifying the internal partition function

for each unit q. For nucleons, with no internal degrees of freedom, q = 1 (neglecting spin). For

clusters, q is calculated from the Helmholtz free energy estimated using a liquid-drop model to
calculate the internal energy and the Fermi-gas model to calculate for the entropic contribution

to the Helmholtz free energy F, i.e.,

qk ¼ exp "F=T½ & ¼ exp W0k " sðTÞk2=3 þ T 2k
#
e0

$ %#
T

& '
: ð3:85Þ

W0 and e0 are constants, while s(T) models a surface free energy that goes to zero at a critical
temperature.

This model is logically consistent and when extended to two particle types (for neutrons

and protons, see Das et al. 2005) can reproduce many experimental observables. However, its

main shortcoming is that it neglects interactions between the clusters. This leads to unphysical

effects such as regions of negative heat capacity. This is inconsistent with thermodynamics and

is well known to result from unphysical Hamiltonians. This has been made clear by both

molecular (Lovett 2007) and mock nuclear systems, simulated with Lennard–Jones-type

interactions (Campi et al. 2005). That is, if one considers the interactions that are active at
the inter- (as well as intra-) cluster level, regions of negative heat capacity largely disappear as

long as the system is truly ergodic. The later well-known qualification is demonstrated by the

recent molecular dynamics work of Thirring et al. (2003).

3.6 Mechanisms in the Nucleon-Nucleon Domain

Once the projectile energy significantly exceeds the Coulomb barrier, nucleon-nucleon (N-N)
scattering in the early stages of the target–projectile interaction may generate nucleons or

clusters that are sufficiently energetic to escape the mean field of the composite system. These

fast nonequilibrium processes begin to appear when the projectile energy per nucleon

approaches the Fermi energy eF. In the Fermi Gas Model, the nucleus is treated as

a degenerate gas of spin ½ particles confined within the nuclear volume. The Fermi energy

eF can be defined as the kinetic energy measured from the bottom of a one-body potential

(a positive quantity) or the binding energy of the last nucleon (a negative quantity). By the

former measure, eF is about +30MeV for both neutrons and protons in nuclei near the valley of
stability. By the latter measure, eF is equal in magnitude to the binding energy but opposite in

sign. Thus, by the latter measure, eF ( "8 MeV for both neutrons and protons in nuclei near

beta stability but diverge from one another as the neutron/proton asymmetry deviates from

stability, with ultimately the value of the nucleon type in excess decreasing to zero at the drip

line. The kinetic energy view is a very useful concept for many reactions and is used below, but

one has to appreciate that this approach views the nucleus as a collection of independent

particles, i.e., no correlations. (The latter definition is more useful for nuclear structure and

does not suffer from the one-body model assumption.)
Experimentally, nonequilibrium phenomena become apparent above projectile kinetic

energies of about 20 MeV per projectile nucleon, which is comparable to the Fermi energy of

nucleons in the nuclear potential well. These processes grow in both probability and complex-

ity with increasing beam energy (Durand et al. 2001).
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Nonequilibrium phenomena are distinguished by two principal features. First, they occur

on a time scale much shorter than the typical equilibration time for statistical decay of

a compound nucleus (t ! 10"21 s). Second, they produce multiparticle final states that are

subsequently followed by statistical decay of the excited heavy product. In normal kinematics

(Ap < At), the energetic light particles or clusters are forward-peaked and form a distinct

exponential tail (area B in> Fig. 3.41) on theMaxwellian spectra produced in later evaporation

stages (area A in > Fig. 3.41). The preequilibrium component for the nucleon channels is as

in by early stage emissions of the multistep compound model, as in by the FKK model for
example. At the extreme of nonequilibrium emissions are the discrete peaks (labeled C), which

correspond to direct reactions, or the first step in a multistep compound model.

The same partition of the cross section seen in the light-particle emission is observed in the

linear momentum transfer (LMT) to the heavy reaction partner, > Fig. 3.42. The folding angle

between correlated binary fission fragments can be used as a gauge for measuring the degree of

LMT in a reaction with a highly fissionable target, i.e., one for which sR ! sf. In this context,

LMT = 1.0 corresponds to a complete fusion (CF) reaction in which the total projectile

momentum is transferred to the composite system, yielding the maximum excitation energy.
LMT = 0.0 (ycorr ! 180#, > Fig. 3.42) indicates a quasi-elastic mechanism that deposits only

a small amount of momentum and excitation energy in the heavy product nucleus. At low

bombarding energies, most of the reaction cross section goes into complete fusion reactions,

with simple transfer events forming a peak near 180#. With increasing projectile energy, the

high LMT peak broadens and shifts toward lower LMT due to the onset of nonequilibrium

contributions inwhich incomplete fusion or prompt light particles carry off some of the projectile

momentum, thus decreasing the deposited excitation energy. At the highest bombarding energies,

the LMT distribution becomes nearly flat, indicating the deposition of a continuous spectrum of
excitation energies, but with diminishing probability for complete fusion of target and projectile

as the beam energy increases. Above beam energies of 100 MeV/A, the probability for complete

fusion events is very low.

For nonfissionable systems, similar effects of the increase in nonequilibrium phenomena

with increasing beam energy can be observed by measuring the velocity distribution of heavy

residues relative to the expected velocity for complete fusion events. This approach is especially

. Fig. 3.41

Kinetic energy spectrum at forward angles for emission of light particles. Region A corresponds to

evaporation from an equilibrated compound nucleus; region B describes preequilibrium

emission, and C indicates the excitation of discrete states in direct reactions
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useful in reverse-kinematics studies, where the heavy residues have appreciable kinetic energies.

Both the fission-fragment correlations and residue-velocity distributions demonstrate that
energetic collisions produce a wide spectrum of nonequilibrium reaction mechanisms that

vary with the projectile–target composition and bombarding energy.

. Fig. 3.42

Diagram of the evolution of nuclear reaction mechanisms from the mean-field to nucleon-

nucleon regimes as a function of projectile kinetic energy per nucleon E/A, as measured by the

angle between coincident fission fragments ucorr. Correlation angles nearer 180! designate

incomplete momentum transfer. The left frame shows the evolution for a proton-induced

reaction on 232Th; arrows indicate ucorr values for CF (Saint-Laurent et al. 1984). For the right-hand

frame, the bar above each plot indicates the LMT scale (1.0 corresponds to CF) for the 14N + 238U

reaction. The two peaks correspond to fusion-like and quasi-elastic processes (Tsang et al. 1984;

Fatyga et al. 1985). In all cases, the correlations are broadened by neutron evaporation from the

fission fragments
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The organization of this section proceeds as follows: Relatively simple nonequilibrium

phenomena observed in reactions near the Fermi energy are initially discussed. The subsequent

sections deal with: models designed to account for the complex reactions that occur at

intermediate energies (E/A > 20 MeV), a simplified participant–spectator model to account

for the reaction observables, and finally, reactions at sufficiently high energy to generate

nuclear material with densities significantly in excess of normal nuclear density.

3.6.1 Reactions Near the Fermi Energy

The role of nonequilibrium emission as an intermediate mechanism, linking prompt one-step

reactions to statistical particle evaporation from an equilibrated system, is most transparent in

the proton spectra of light-ion-induced reactions on complex nuclei (Wu et al. 1979). The

exponentially falling, or preequilibrium, component (B) in > Fig. 3.41 can be viewed as arising

from a time-dependent process inwhich particles are emitted as the energy density in the initial

target–projectile interaction zone randomizes throughout the nuclear volume: the lower the
particle energy, the later in the process the particle was emitted. Two-component fits to the

spectral shapes of components A and B yield slope temperatures consistent with an equili-

brated Fermi gas for the statistical component, but slope temperatures are two-to-four times

higher for the preequilibrium part, indicating emission from an earlier, hotter stage of the

reaction.

Preequilibrium effects also appear in the excitation functions for heavy reaction products

in this energy regime. The product yields shown in> Fig. 3.11 reach their peaks at bombarding

energies consistent with compound nucleus formation; however, all excitation functions have
appreciable cross-section tails that extend to higher bombarding energies. For example, in the

reaction

4Heþ197Au!198Tlþ 3n ð3:86Þ

the yield of 198Tl (> Fig. 3.11) persists to much higher energies than predicted by compound

nucleus energetics, because at least one of the emitted neutrons is of preequilibrium origin and

carries off more energy than an evaporated neutron. The lowering of the average excitation

energy due to preequilibrium emission reduces the probability for sequential evaporative

emission and thus serves to hinder attempts to produce nuclei far from stability by increasing

the beam energy.

For bombarding energies well above the barrier, one also observes the preequilibrium
emission of intermediate-mass fragments (2< Z<$20, or IMFs) in reactions on heavy nuclei.

The reaction observables for IMF emission strongly resemble those for light particles and

presumably occur on a comparable short time scale. Models based upon a coalescence concept

(Bond et al. 1977) have met with some success for light clusters, but encounter more difficulties

for IMFs.

The experimental observables ascribed to the preequilibrium mechanism have usually been

interpreted in the context of the exciton model (Griffin et al. 1966; Blann et al. 1975). In the basic

model, the nucleus is treated as a Fermi gas in which the projectile initiates a series of sequential
N-N collisions, generating unstable particle-hole states, or excitons (exciton = a particle-hole

pair). The number of excitons is thus proportional to the degree of thermalization.

Large exciton numbers imply multiple collisions for which the projectile energy is

partitioned among many nucleons likely to be in bound (single-particle) states, yielding high
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excitation energies. Conversely, when only a few excitons are involved (few collisions), much

larger energy transfers must occur and particles are raised to unbound states that yield

energetic particle emission, leaving the heavy partner in a low state of excitation. Refinements

of the model now include numerous physical effects such as the treatment of the nuclear

potential and N-N mean-free path, Pauli blocking, barrier penetration, and finite-state life-

times (Gadioli and Hodgson 1992; Chadwick and Oblozinsky 1992).

3.6.2 Models of Collision Dynamics

While the exciton model and its derivatives have been relatively successful in describing light-

ion-induced reactions near the Fermi energy, the reaction mechanism becomes more complex

at higher energies or when heavy-ion projectiles are involved. A major complication is

introduced when multiple nonequilibrium processes occur during the evolution from initial

target-projectile contact to the internally equilibrated final state. This problem is frequently
approximated by a two-step model that assumes a fast collision stage followed by statistical

decay of the system at a much later time (t> 10!21 s). The fast stage (time scale t" 10!22 s) is

described by models that attempt to account for mass and energy dissipation during the

collision. The second stage is governed by statistical decay mechanisms such as particle

evaporation and fission, as discussed in > Sect. 3.5.

For reactions well above the Fermi energy (E/A> 100MeV), the intranuclear cascade (INC)

model (Serber 1947) has been frequently employed. For projectiles with de Broglie wavelengths

much smaller than the average internucleon separation distance in the nucleus, all nucleon-
nucleon collisions can be treated as quasi-free N-N scatterings. The projectile is assumed to

follow a semiclassical path and initiate an N-N interaction that generates a cascade of

scatterings in three dimensions. The cascade is computed numerically until all available

projectile energy is dissipated into either fast cascade particles that leave the system or into

internal excitation energy of the target residue. > Figure 3.43 shows the schematic concept of

the INC model.

The INC model is a phenomenological approach that employs experimental N-N scatter-

ing cross sections and angular distributions as a function of energy up to several GeV. Nuclear
geometry is incorporated to deal with nuclear surface effects for large impact parameters and

a Fermi-gas model with Coulomb barrier effects is used to evaluate the number of fast cascade

particles that escape, as well as those that are thermalized and converted into excitation energy.

Monte Carlo methods are used to select the impact parameter in each event as well as the

scattering angles. For heavy-ion reactions, where multiple primary N-N collisions become

possible in the initial contact stage, account must be taken of the vacancies created by these

collisions. At energies for which meson production and excitation of the intrinsic resonance

states of the nucleon (e.g., D, N# etc.) become possible, the scattering cross section for these
types of reactions must be included, as well as the reabsorption probability of the mesons and

decay of the nucleon excited states. At proton energies of several GeV and above, the growing

number of meson types and resonance states introduces an additional complication, since

there is limited experimental guidance for estimating these scattering cross sections.

INC codes – e.g., ISABEL, Yarif and Fraenkel (1981), and QGSM, Toneev et al. (1990) – are

relatively successful in reproducing the fast cascade component of the reaction observables for

light-ion-induced reactions above 100MeV. They also predict the qualitative result that a broad

distribution of excitation energies will be produced due to impact-parameter-dependent
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transparency effects, with the maximum usually being well below the maximum possible

excitation energy. Quantitative predictions of the excitation energy are more problematical.

This uncertainty stems from the simple approximations relative to the nuclear potential that

became important in terminating the cascade in its latter stages.

For heavy-ion reactions, an additional complication with the INC model is that it ignores

mean-field effects, which become relevant when there is extensive mixing of target and

projectile nucleons. This shortcoming has been addressed via a microscopic theory based on
the Boltzmann–Uehling–Uhlenbeck (BUU) formalism (Bertsch et al. 1984); and variations

(Gregoire et al. 1985). In this formalism, the time evolution of the mean-field is described by

a one-body density-distribution function that is solved simultaneously with a nucleon-nucleon

collision integral, thus accounting for both the mean field and N-N collisions. The collision

integral is calculated via an intranuclear cascade where only scattering into unoccupied phase

space cells is allowed.

Models of this type have proven effective in describing the multiplicities and spectra for

energetic nucleons (Durand et al. 2001), as well as small-angle particle-particle correlations
and integrated spatial distributions (Bauer et al. 1992). In confronting theory with heavy

residue data, BUU-type calculations encounter two principal shortcomings, both of which are

also present in INC calculations: first, the time at which thermalization has been achieved and

second, the lack of density fluctuations in the model that would provide a mechanism for the

formation of nuclear clusters. In an effort to develop a full dynamical theory of fragment

production, density fluctuations have been incorporated via the classical molecular dynamics

(MD) approach (Schlagel and Pandharipande 1987), which has led to several quantal dynami-

cal models (QMD) such as fermionic molecular dynamics (Feldmeier et al. 1995; Feldmeier
and Schnack 2000), antisymmetrized molecular dynamics (Ono and Horiuchi 1996), and

Brownian one-body dynamics (Chomaz et al. 1994).

Both BUU- and QMD-like models can be used to investigate the nuclear equation of state

(EOS) and the phase diagram for nuclear matter shown schematically in > Fig. 3.3. One

parameter of particular concern is the nuclear incompressibility constant K (a subject dealt

. Fig. 3.43

Simplified schematic picture of an intranuclear cascade event for an energetic proton incident on

a heavy nucleus. The number of scatterings increases as the impact parameter decreases
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with in the next section). From measurements of spatial flow distributions of emitted light

ions, it has been possible to determine the bombarding energy at which the transition from

the mean-field to nucleon-nucleon scattering dominance occurs; i.e., the ‘‘balance energy’’

where attractive mean-field scattering becomes equal to repulsive nucleon-nucleon scattering

(Magestro et al. 2000).

The collision models also demonstrate how nuclear reactions can be used to explore

variations from normal nuclear density r0, ranging from dilute (r < r0) to compressed
(r > r0) states, by varying the bombarding energy and target–projectile asymmetry. For

example, proton-induced reactions above about 5 GeV may leave the heavy partner in a state

of depleted density due to the near-instantaneous knockout of several fast cascade particles.

At the other extreme, in symmetric heavy-ion collisions, the large target–projectile overlap

region in central collisions leads to significant compression and high energy density in the early

stages of the reaction.

3.6.3 Participant–Spectator Reactions

For heavy-ion collisions well above the Fermi energy, models predict a low probability for

composite-nucleus formation. Instead, most of the cross section is predicted to go into
reactions that can be generalized as ‘‘participant–spectator’’ reactions (> Fig. 3.44). In the

participant–spectator scenario, the participant source is defined by those nucleons that occupy

the geometrical overlap volume of the target and projectile, which is impact-parameter

dependent.

. Fig. 3.44

Schematic picture of the participant-spectator model. The hot participant region is formed from

nucleons in the target-projectile overlap region. The target and projectile remnants on the

periphery act as spectators, which then decay statistically
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The number of participant nucleons and the energy-density of this localized source

increase with decreasing impact parameter. The spectators are the target and projectile rem-

nants outside the overlap volume and they decouple from the participant source on a time scale

that decreases with increasing projectile energy and then decay statistically. The excitation

energy of these spectators is a function of the overlap region.

Studies of the projectile spectator, or projectile fragmentation, permit investigation of nuclei

at extremes of temperature and neutron–proton asymmetry (nuclei with large isospin compo-

nents). By employing reverse kinematics, nuclei of all the elements can be studied. Because of
the broad range of impact parameters that contribute to projectile-fragmentation events, the

nuclidic yield distribution is very broad in N and Z, with the resultant formation of product

nuclei far from stability. Exploitation of this result has led to the discovery of many new

neutron- or proton-rich nuclei and provided access to a greatly expanded nuclear landscape for

nuclear structure and nuclear astrophysics studies. One of the more intriguing byproducts of

such studies has been the discovery of ‘‘halo nuclei’’ such as 11
3 Li (> Fig. 3.32 and the discussion

of knockout reactions) in which the nuclear radius is abnormally large, since the highest-lying

pair of neutrons occupies an extended orbit (Hanson et al. 1995; Hanson and Tostevin 2003).
The participant zone constitutes a unique nuclear environment, analogous to a rapidly

evolving plasma decoupled from the nuclear mean field. This zone is the source of energetic

nonequilibrium light particles emitted from the neck region between the two separating

spectator nuclei. Isospin effects in the overlap volume may subsequently modify the isotope

yields. Because of the large multiplicities of particles that may be emitted from both spectator

and participant sources, quantitative understanding of these reactions requires large detector

arrays with excellent charge, mass, and spatial resolution (see >Chap. 48 in Vol. 5).

The fact that the projectile fragments are emitted with velocities near that of the beam also
has practical consequences. From the detection point of view, the identification of a fragment’s

charge and mass is simplified by the strongly forward-focused kinematics. Projectile fragmen-

tation is also the basis for one of the major radioactive-beam accelerator concepts. By

magnetically separating specific fragmentation products, beams of nuclei far from stability

can now be provided with intensities high enough to perform nuclear reaction and structure

studies. This capability will greatly enhance future efforts to study the effects of neutron–

proton asymmetry on the EOS that are predicted to be significant in several nuclear matter

theories (Baran et al. 1998; Li 1997). Several accelerator facilities currently exist, or are in the
construction/planning stages, for the study of nuclear isospin effects; for example, ATLAS at

Argonne National Laboratory, USA (ATLAS 2010), ISAC at TRIUMF, Canada (TRIUMF

2010), CCL at Michigan State University, USA (CCL 2010), SIS at GSI, Germany (GSI

2010), GANIL, France (GANIL 2010), HRIBF at Oak Ridge National Laboratory, USA

(HRIBF 2003), JINR in Dubna, Russia (JINR 2003), RARF at RIKEN, Japan (RIKEN 2010),

Cyclotron Institute at Texas A&M, USA (TAMU 2010) and the recently approved FRIB facility

at Michigan State University, USA (FRIB 2010).

3.6.4 Relativistic Heavy-Ion Collisions: Dense Nuclear Matter

In order to investigate the behavior of nuclear matter at still higher temperatures and densities,

it is essential to rely on collisions between heavy ions at relativistic energies (Hermann et al.

1999; Reisdorf and Ritter 1997). At bombarding energies near 1 GeV/A and above, nuclear

matter can be compressed to densities considerably higher than in normal nuclei, perhaps
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approaching the conditions believed to be present when a neutron star is formed in the core of

a collapsing supernova. From event-by-event analysis of the collective trajectories and the

momenta of particles emitted during these collisions (> Fig. 3.45), vital tests of the nuclear

equation of state can be performed. Two relevant terms often employed in relativistic heavy-ion

research are rapidity and flow.

Rapidity is defined by the expression

y ¼ 1

2
ln

E þ pzc

E # pzc

! "
; ð3:87Þ

where pz is the momentum component parallel to the beam and E is the total energy (rest mass

plus kinetic energy). Rapidity, which is a relativistic representation of the velocity parallel to the

beam, provides a variable suitable for discussing the kinematical regions generated in collisions

of relativistic heavy ions.

Depending on the axis of orientation, different types of flow can be defined by addition

of vectors, such as in > Fig. 3.45. Transverse flow (see F in > Fig. 3.46) is a concept used

to examine the emission patterns of spectator nucleons that are emitted transverse to the beam
direction (z-axis in > Fig. 3.45), presumably due to the anomalously large scatterings they

undergo when they interact with the compressed region formed in an event. Target and

projectile matter can be distinguished on the basis of their respective rapidities. The amount

. Fig. 3.45

Schematic view of a relativistic Au + Au collision with impact parameter b = 6.0 fm as a function of

time (increasing from left to right as indicated in the cells of the top panel). The middle frame

represents matter within a density greater than 0.1 r0, where r0 is the ground-state density of

nuclear matter. Bottom panel shows this projection in the reaction plane (x–z) with respect to the

beam direction z. The top panel shows contours of constant pressure in the transverse plane (x–y)

(From Danielewicz et al. 2002)
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of flow (Danielewicz et al. 2002) is sensitive to the compressibility of the matter modeled by the

transport model. By comparing flow datawith the predictions of transport-theory calculations,

it is then possible to evaluate the parameters of the EOS at high density (next section).

Flow can be used as a measure of the properties of the N-N interaction in the high density

overlap volume, as well as evaluating the densities reached in such collisions. Densities up to
r/r0 ! 2–4 (Danielewicz et al. 2002) have been estimated from such studies, providing new

insights into the nuclear EOS and the related problem of neutron-star formation in

supernovae. In addition, the spectra observed at bombarding energies above E/A ! 10 GeV/

nucleon reach spectral temperatures of up to T ! 150 MeV. Such temperatures approach the

value for deconfinement into a quark-gluon plasma, a plasma of a type not present since the

primeval conditions of the Big Bang.

In recent years, the focus of this research has been at the Relativistic Heavy-Ion collider at

Brookhaven National Laboratory (RHIC 2005, 2010). One of themost significant findings from
the work at RHIC has been that the quark-gluon plasma generated has an ultralow viscosity-to-

entropy ratio. The low viscosity implies that the degrees of freedom (quarks and gluons) have

short mean-free paths and that the medium itself is still strongly correlated. While this implies

that hydrodynamic reaction-model descriptions are valid, fundamental theory is yet to provide

a clear insight into why the medium is so strongly coupled. Even higher energy work at the

Large Hadron Collider at Conseil Européenne pour la Recherche Nucléaire (LHC, CERN 2010)

will produce still higher temperatures and is likely to shed new light on this question.

3.7 The Nuclear Equation of State

3.7.1 Background and Connection to Classical Thermodynamics

In an introduction to thermodynamics, one studies large systems with the aid of ‘‘extensive’’

energy functions. These energy functions have two ‘‘sectors’’ for one-component systems, one

. Fig. 3.46

Transverse flow F as a function of beam energy (left) and zero-temperature EoS for symmetric

nuclear matter (right). Note that the larger the incompressibility coefficient, the larger the

pressure P (From Danielewicz et al. 2002)
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‘‘mechanical’’ and the other ‘‘thermal.’’ For multicomponent systems another ‘‘chemical’’

sector must be added. The variables are: P and V (or its inverse, the number density r) for
the ‘‘mechanical’’ sector and S and T for the ‘‘thermal’’ sector. The natural independent variable

for the thermal sector is the entropy S for the pure energy functions while T is the independent

variable in this sector for the free energies (corresponding to the energy available to do work).

For macroscopic systems S and V are extensive, while T and P are intensive, meaning that one

and only one of the variables in each set must be extensive.
Equations of state (EoS) are an attempt to capture the interrelationships between the

variable set of thermodynamics for infinite matter, in the absence of long-range interactions.

Thermodynamics itself is the enterprise of trying to describe matter with the absolute mini-

mum number of macroscopic variables. One deduces the EoS from direct measurement of the

macroscopic variables and from measureable derivatives such as the isothermal and adiabatic

compressibilities for the ‘‘mechanical’’ sector and the constant pressure or volume heat

capacities for the thermal sector.

For finite systems such as nuclei, a surface sector must be added. This sector is not extensive
(i.e., while proportional to the surface area, it is not proportional to the amount of material).

The study of systems where the energy functions are nonextensive has a long history starting

with the work of Gibbs. Both small systems (due to surfaces) and systems with long-range

interactions (where the interaction energy scales with the number of participants squared) fall

into this category. Nuclei suffer from both of these extensivity-destroying features.

Recalling basic (extensive) thermodynamics, the internal energy E of an extensive one-

component system is

dE! ¼ TdS # PdV or de ¼ Tds # Pdv: ð3:88Þ

The lower case is employed in the second version to indicate the energy, entropy, and

volume per particle. The pressure is no more than the dependence of energy on volume or

number density,

P ¼ # @e
@v
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@e
@r
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: ð3:89Þ

The second equality makes use of the fact that the volume per unit and the number density

are inversely related, v ¼ r#1 ! dv ¼ #r#2dr: The final equality separates the isoscalar

component of the pressure (the only term present for symmetric matter) from that originating

from neutron/proton asymmetry. At large asymmetries, the second term dwarfs the first, so it is

this term that is principally responsible for resisting the gravitational collapse of a neutron star.

The compressibility is defined as either the negative of the relative change in the volume

with the application of pressure or the relative change in the density with the application of

pressure under specified conditions. (The signs are such as to make the coefficient positive for
any thermodynamically stable system.) Therefore, the adiabatic compressibility (the version

which dictates the speed of sound) is

ks ¼ # 1

v

@v

@P

! "

s

¼ 1

r
@r
@P

! "

s

: ð3:90Þ

Rather than dealing with k, nuclear science has focused in its inverse, the ‘‘incompres-

sibility’’ coefficient’’ K. Another minor change is that rather than dealing with a problem that is

intrinsically 3-dimensional, the analysis is reduced to a one-dimensional problem of the

stiffness with respect to harmonic vibrations of a uniform (albeit infinite) sphere of radius R.
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(The conversion to a 1-D problem, with the independent variable being R, makes use of dr/dR
=!3r/R twice, yielding the factor of 9). In this case, from>Eq. (3.89) one obtains the nuclear

matter (nm) incompressibility Knm (with the dimensions of energy):

Knm MeV½ # $ 9
@P

@r

! "

s

¼ 9r2sat
@2e
@2r

! "

s;r¼rsat

: ð3:91Þ

This is just the inverse of ks, with a slightly different coefficient. (Note that 1/r for saturated
nuclear matter is V/A = (4/3)pR3/A = (4/3)r0

3p ( 7.2 fm3/nucleon).

The thermal properties of matter are captured by its ability to absorb energy. The quantum

version of the relevant question is: at a given excitation energy, how many ways can a system

sustain that energy? At constant volume, the energy-dependent answer to this question is

captured in the heat capacity as a function of excitation energy

CV E)ð Þ $ @E)
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: ð3:92Þ

The effective mass, introduced in> Sect. 3.3 and discussed more in> Sect. 3.5, is the factor

that corrects a single-particle logic for the many-body correlations. Thus, one can say that the

study of the evolution in the level-density parameter a, is one of determination of how m)

changes with E). This thermal sector was discussed in > Sect. 3.5.

Description of the properties of matter is punctuated by phase transitions. While formally

such transitions can occur only in the (extensive) matter limit, the manifestations of a matter

phase transition in a finite system can profoundly affect the behavior of a finite ‘‘clump’’ of
matter. In nuclear science, symmetric matter must undergo a liquid-to-gas-like transition as

the matter is heated and the average density reduced, since it has an attractive interaction that

can be saturated at short-range. Just as in the case of standard fluids, there will be a coexistence

region that self-partitions into low- and high-density phases. Just how this transition is

manifest in real charged and finite nuclear (i.e., in the real nonextensive) systems has been

the focus of considerable effort.

3.7.2 The Perspective from Energy-Density-Functional Theory

Extraction of an EoS from a fundamental theory is of course desirable, and while there has been

progress along this line, presently onemust work with functionals of relevant properties such as

the density and asymmetry that depend on free parameters that must be determined by some

fitting procedure (Bender et al. 2003).

The task is to generate a functional for the energy of a finite system as a function of density

and other variables that might be relevant. In fact, this procedure just generates a more
rigorous alternative to the Liquid-Drop Model (LDM). This version of developing an expres-

sion for the mass of a drop involves an integral over space. The surface term comes from the

gradients (inspired by van der Waals) and the asymmetry terms by the dependence on both of

the individual densities. The Coulomb term, not included in the expression provided in the

text, comes from an integral over the nuclear volume, the same way as it does in the LDM.

Let the energy as a function of density E(r) be this function, which in the nuclear case must

be a function of the local neutron and proton densities and their derivatives. (Van der Waals

appreciated that nature must ‘‘pay’’ for producing nonuniform densities.) The binding energy
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for a drop must come from an integral of the nuclear energy density x, with corrections for

density gradients over the nuclear density,

E ¼
Z

x rn; rp
! "

þ ! rrð Þ2 þ !asym rrn %rrp
! "2

þ . . .

# $
d3r þ ECoul; ð3:93Þ

where, in this case, the !0s (one isoscalar and one for the asymmetry) are coefficients to be

determined by fitting data in exactly the same fashion as the surface and asymmetry coefficients

are fit in the liquid-drop model.

This approach works well for classical fluids, although its convergence has never been

proved. The connection to infinite uncharged nuclear matter is that the gradient expansion

vanishes and the Coulomb term (which blows up in the infinite limit) is dropped. In that case,

the nuclear energy density x or the energy per nucleon e (see > Eq. (3.94)) can be viewed as an
isoscalar part (with only a density dependence) and an asymmetry component with both

a density and an asymmetry dependence as a function of the deviation of the density from

saturation and of the asymmetry from symmetry,

x & E

V
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E
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The term in square brackets is the energy (per nucleon) of symmetric nuclear matter, while the

term in curly brackets captures the change in the energy with asymmetry. Note that the

coefficient of the asymmetry term is density-dependent.

Development of the first and second terms (isoscalar and isovector, respectively) in
> Eq. 3.94 leads to several other coefficients that in principle can be phenomenologically

determined. As symmetric matter represents an equilibrium point, an expansion in the density

(from the saturation value) cannot have a linear term. The same cannot be said of the
asymmetry term. Therefore, an expansion for both the isoscalar and asymmetry terms can

be written,

e a; dð Þ ¼ e0 þ
K

18
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3
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where the term in curly parenthesis is the asymmetry contribution is the S(a) in >Eq. 3.94.

The constants in the coefficients are chosen so that the constants (K, L, and Kasym) are

consistent with other formulations (Danielewicz and Lee 2009).

3.7.3 The Incompressibility from the Physical LDM-Like Expansion

The incompressibility can also be expressed in a Liquid-Drop Model-like expansion, that is, an

expansion where the terms are associated with physical corrections, rather than the result of

210 3 Nuclear Reactions



a Taylor expansion. Doing so provides an expression for the incompressibility of a finite

charged drop (Youngblood et al. 1999),

KA ¼ Knm þ KsurfA
#1=3 þ Kasym

N # Z

A

! "2

þ Kcoul
Z2

A4=3
: ð3:97Þ

The first term Knm is the incompressibility of infinite uncharged nuclear matter (the extensive

quantity), the second corrects the matter incompressibility for the presence of the surface, the

third term corrects for the neutron–proton asymmetry of the matter and the fourth term (one

that blows up for infinite matter) corrects for the charge on the finite drop.

The left-hand side of the physical expansion can be determined from the (mean) energy of

the giant-monopole resonance (GMR), and root-mean-square size of the nuclear drop (ColÒ
et al. 2004),

EGMR ¼ !h

ffiffiffiffiffiffiffiffiffiffiffiffi
KA

m r2h i

s

: ð3:98Þ

Fitting the physical expansion leads to a value of Knm = (240 & 10) MeV (ColÒ et al. 2004).

Unfortunately, the GMR data address only tiny variations of the mean density about

saturation. The extrapolation to densities far different than saturation is questionable. To

gain insight into density variations of more relevance to neutron-star structure, HI ‘‘flow’’

analyses of the type shown in > Fig. 3.45 have been used. The momenta transverse to the beam

(as a function of the beam energy) are shown in > Fig. 3.46 along with a comparison to model

(BUU) simulations. The more incompressible the fluid, the greater the momentum ‘‘extruded’’
perpendicular to the beam axis. The constraints on the symmetric matter incompressibility are

summarized on the right-hand side of the same figure (Danielewicz et al. 2002). Two state-

ments can be made about the flow results. First, these data are inconsistent with the strongly

repulsive nuclear equations of state derived from relativistic mean field theories and weakly

repulsive equations of state, which would result from a phase transition at densities less than

three times the saturation density. Second, while the uncertainties grow with density, the flow

results are consistent with those from the GMR studies.

It is the asymmetry term that has been the focus of much recent effort, as it is this term
that provides the internal pressure, holding back the gravitational collapse of a (cold) neutron

star. First, results are presented from the perspective of the physical (LDM-like) expansion.

As Ksurf is close in magnitude (but opposite in sign) to Knm, and the Coulomb constant

(#5.2 MeV) is essentially model-independent, for sufficiently heavy isotopes, the difference

KA# KCoulZ
2A#4/3 from >Eq. 3.97 can be approximated by the analytic form y = Kasym d2 + b,

where d = (N # Z)/A. This approximate relationship has been employed for a series of even-A

Sn isotopes for which the giant monopole resonance (GMR) was excited with inelastic

alpha-particle scattering at small angles (Li et al. 2007). This work (> Fig. 3.47) provided
a value Kasym = (#550& 100) MeV. Data on the GMR from isotopes with asymmetries greater

or less than those of the natural Sn isotopes would greatly reduce the uncertainty onKasym. This

will be one of the focus activities at FRIB in the coming decade. Nevertheless, this result is

consistent with the value Kasym = (#500 & 50) MeV obtained from analysis of the isotopic

transport ratios in medium-energy heavy-ion reactions (Li et al. 2008).

Viewed from the energy-density expansion perspective, the analysis described above

will scramble the constant (S0), linear (L), and quadratic (Kasym) terms in > Eq. 3.96. Sepa-

rating the dependences is an active research area, about which several comments can be made.
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First, there is a cross-correlation (shown in> Fig. 3.48) between the constant term (S0) and the

linear term (L) (Tsang et al. 2009). Second, an overall constraint on the density dependence of

the asymmetry energy is deduced from HI-reaction data (Danielewicz and Lee 2009; Shetty

et al. 2007),

S rð Þ / rx 1þ crð Þ; 2

3
< x< 1: ð3:99Þ

Again, in an effort to be forward looking, experiments on parity-violating electron scat-

tering on 208Pb (a project called PREX) will be done in the next few years. If successful, this

experiment will produce data directly sensitive to the linear term in the dependence of the

asymmetry energy on density (Horowitz and Piekarewicz 2002).

3.7.4 Cluster Formation at Very Low Density

At very low density and temperature, alpha clusters become a significant component of

symmetric nuclear matter (Friedman and Pandharipande 1981). The contribution of such

clusters is determined by an interplay between the translational phase space (which favors free

nucleons with increasing temperature) and binding energy (which favors alpha-particle for-

mation by allowing more energy to be available for translation). One only needs to consider

alpha decay of heavy nuclei to appreciate that clustering in the matter tails of heavy (cold)
nuclei is significant. As is the case in water, one can consider such clusters as transitory, an

existence that increases as the density and temperature decrease.

There have been significant advances on both the theoretical and experimental fronts in

elucidating the behavior of nuclear material at very low densities, densities less than 0.1 of

saturation. On the theoretical front, a virial (density expansion) EoS has been formulated by

. Fig. 3.47

Systematics of the difference KA 2 KCoul Z
2/A4/3 in the Sn isotopes as a function of d ¼ (N2Z)/A;

KCoul =25.2MeV. The solid line represents least-squares quadratic fit to the data (When plotted in

this fashion, the value of Kasym comes from the curvature of the best fit) (From Li et al. 2007)
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explicitly considering the (N-N), N-alpha and alpha-alpha scattering phase shifts (Horowitz

and Schwenk 2006). One of the values of this work has been to quantify the pressure reduction

and asymmetry energy enhancement (relative to a nucleon gas), due to alpha-particle cluster-

ing. Confirmation of this enhancement at densities of 0.01–0.05 times the ground-state density

of symmetric nuclear matter has been observed in an analysis of HI reaction data (Kowalski

et al. 2007, Natowitz et al. 2010). This limiting behavior is one aspect of clustering in nuclear
systems. The next section deals with perhaps the most significant aspect of this behavior.

3.7.5 Multifragmentation: The Low-Density Regime and the
Manifestation of the Liquid–Gas Phase Transition in Nuclear
Collisions

When the first high-energy accelerators became available in the 1950s, radiochemical and
emulsion studies indicated the existence of a reaction mechanism in which a heavy nucleus is

disintegrated into multiple neutrons, H and He ions, and IMFs (> Fig. 3.1), a process now

called multifragmentation (Lynch 1987; Trautmann 2001; Chomaz 2001). The connection of

this phenomenon to the nuclear liquid–gas phase transition in matter was made after con-

struction of a ‘‘caloric curve,’’ i.e., T(E!), shown in > Fig. 3.49 (Pochodzalla et al. 1995). The

ordinate was constructed using isotope ratio ‘‘thermometers.’’ Such thermometers use the

. Fig. 3.48

Representation of the constraints on parameters S0 and L in> Eq. 3.96. The right axis corresponds

to the neutron-matter-symmetry pressure at saturation density. The region bounded by the

diagonal lines represents the constraints obtained from analysis of HI collisions. The vertical lines

near S0 = 31 MeV are obtained from LDM-like analyses (i.e., masses). The lower and upper boxes

are formed by the constraints from the so-called Pigmy Dipole resonances (neutron-rich skin vs.

core) and from symmetry-energy analysis on nuclei, respectively. The inset shows the density

dependence of the symmetry energy in the shaded region. The symbol in the inset represents the

GDR. Note the greatly offset scales on the abscissa and ordinate (From Tsang et al. 2009)

L

S
r

r/r

S

Nuclear Reactions 3 213



difference in the ground-state masses of different isotopes in a Boltzmann expression for the

relative yield of the isotopes (Albergo 1985). The experimental isotope ratios are fit by

adjusting the temperature.

The only way to have a halt in the increase in T with increasing E! is for additional degrees

of freedom to become available. In the case of the macroscopic liquid–gas transition, it is the

access to the full 3-D translational degrees of freedom that halts the increase in the average
energy in any one degree of freedom (as energy is poured into the newly accessed ones.)

The observables in high-energy light-ion or intermediate-energy HI collisions all relate to

the above-mentioned multifragmentation exit channel. In order to create multifragmentation

events, it is necessary to deposit excitation energies in a nucleus in excess of E!/A " 4–5 MeV,

i.e., about 1 GeV in a heavy nucleus. Transport codes predict that such events are rare,

comprising less than #5% of the nuclear reaction cross section. Among the methods used to

prepare such systems have been light-ion reactions (ISiS, FASA), reverse-kinematics reactions

(EOS), peripheral reactions (ALADIN), and near-symmetric heavy-ion (A + A) reactions
(INDRA, ALADIN and Miniball). The various detector systems (given in square brackets)

and earlier devices are referred to in Durand et al. (2001).

The plateau in the caloric curve is only indicative of access to additional degrees of freedom,

not necessarily access to prompt multifragment decay. For example, expansion or greatly

increasing the surface diffuseness, or an increase in the level-density parameter all would

decrease the rate of increase of T with E!, as discussed in > Sect. 3.5. However, numerous

. Fig. 3.49

Caloric curve (temperature vs. heat) derived from peripheral collisions in 197Au + 197Au reactions.

Temperatures are derived from yield ratios of 3He/4He and 6Li/7Li isotopes and heat (E*/A) from

event-by-event calorimetry. The solid line describes the expected behavior for nuclear

evaporation. The dashed line is that expected for a hot nuclear gas. The plateau region in

between has been interpreted as evidence for a ‘‘boiling-like’’ phase transition in nuclei

(Pochodzalla et al. 1995)
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observables do in fact indicate that multifragmentation is the result of a near-instantaneous

phenomenon rather than the result of sequential binary decays. Among these observables are

evidence for a breakup density of only 20–30% of normal nuclear density (r/r0 ! 0.2–0.3),

compression–decompression effects in A + A reactions, and most important, time-scale

measurements based on spatial correlations among the clusters. The latter work demonstrates

that the breakup time scale is nearly simultaneous (t ! 10"22 s), much shorter than expected

for a drawn-out sequential evaporative sequence (see > Fig. 3.50 and Viola et al. 2006).

Nuclear models based upon both statistical concepts and those for a generalized liquid–gas
phase transition dependent on fragment size distribution are in general accord with the phase

transition interpretation as long as themodels assume expansion to a given breakup volume. In

these models, the decay can be that expected from a statistical sampling of the cluster phase

space (Bondorf et al. 1985; Gross 1990; Das et al. 2005), that is, without any dynamics, or

a time-dependent approach in which emission occurs as the system expands to the breakup

volume (Friedman 1990). However, it must be mentioned that as recent fragment-fragment

correlation data could not be reproduced by prompt fragmentation models, Gentil et al.

(2008), the interpretation of these complex decays is still not fully understood.

. Fig. 3.50

Top: Evolution of a multifragmentation reaction as a function of heat E*/A for the number of Z ≥ 3

fragments (probability P(Nimf), IMF multiplicity Nimf). Bottom: Breakup time t in fm/c (1 fm/c

= 3.3 # 10224 s). The growing multiplicity and rapid decrease in the breakup time are consistent

with a ‘‘boiling-like’’ phase transition in nuclei (Beaulieu et al. 2000)
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Analyses based on the finite-scaling model proposed by Fisher for classical drops (Elliott

et al. 2002), percolation theory (Bauer et al. 1992), and a statistical multifragmentation model

(Botvina et al. 1999) show generally good agreement with the concept that the transition (halt

in the increase in the T with E!) is associated with accessing the multifragment phase space.

The opening of this most complex decay channel in finite nuclei at T " 4–6 MeV implies that

infinite, uncharged matter cannot exist above Tcrit " 17 MeV (Natowitz et al. 2002).

Perhaps, the most insightful result employing the fragmentation data comes from
employing Fisher’s model (Elliott et al. 2002). The critical exponents associated with the

transition that occurs in the finite system’s analog to the infinite matter liquid–gas phase

transition are extracted. In addition, using the ubiquitous coexistence behavior for classical

fluids, the nuclear phase transition data were added to what are known as ‘‘Guggenheim plots’’

(T/Tcrit vs. both the low and high reduced densities rv/rcrit and rl/rcrit). However, it should be

kept in mind that unlike the macroscopic cases employed by Guggenheim and others to prove

reducibility, actual measurements of the two coexisting densities as a function of temperature is

not done. Nevertheless, this work shows how nature’s systems, while seeming quite different,
are often interrelated. The careful reader would have noted a few such cases of this unity of

natural systems in this chapter.

3.8 Addendum: Cross-Section Calculations

For the case of a beam of charged particles incident on a thin target of thickness x, as illustrated

in > Fig. 3.51, the projectile flux can be expressed as np = I/(qe). Here I is the electric current in
amperes, as measured in a Faraday cup that collects the total charge deposited by projectiles of

charge qe. For light ions, the projectile ion is usually fully stripped of its atomic electrons so that

q = Z, the atomic number of the ion. However, for very low energy or very heavy ions, complete

stripping of the atomic electrons may not occur, so that the ionic state of the projectile must be

accounted for. The number density of target atoms nt is given by

nt ¼ rM=Mð ÞNA; ð3:100Þ

where rM is the mass density, M is the molar mass of the target atoms, and NA is Avogadro’s

number (6.022 & 1023 mol'1). For reactions induced by a beam of particles (two dimensional
geometry), the surface number density of target nuclei (Nt/area) is the relevant target collision

factor, assuming that the beam cross section is smaller than the target area. For a given

thickness x the surface number density (usually measured in cm'2) is

Nt=S ¼ ntx: ð3:101Þ

where S is the surface area of the target.

With these definitions the production rate R(a,k) for a given exit channel k becomes

R a; kð Þ ¼ npntxs a; kð Þ: ð3:102Þ

where the quantities are most commonly given in the following units: R (s'1), np (s'1),

nt (cm
'3), x (cm), and s (cm2). For thick targets the above linear behavior does not hold

anymore. However, an arbitrarily thick sample can be viewed as being composed of thin slices

of thickness dx. The rate of product nucleus formation is then given by the rate of particle

removal from the beam as it passes through the slice of the target of thickness dx,
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! dnp ¼ npnts a; kð Þdx: ð3:103Þ

Here s(a,k) stands for the total cross section. Integration over the thickness x of the target gives

!
Z f

i

dnp
np

¼ snt
Zx

0

dx ; ð3:104Þ

where i (initial) and f (final) are to indicate the particle flux entering and leaving the target,

respectively, and

np fð Þ
np ið Þ ¼ exp !ntsxð Þ: ð3:105Þ

The production rate then becomes

R ¼ np ið Þ ! np fð Þ ¼ np ið Þ 1! exp !ntsxð Þ½ &: ð3:106Þ

If s is the total reaction cross section, this expression predicts the attenuation of the beam

due to all nuclear reactions in a target of thickness x. This expression assumes that the beam

intensity and cross section are constants. In reality, this is not necessarily the case and

corrections may be required due to time variations in the projectile current and dependence
of the cross section on beam energy (> Fig. 3.51).

For an infinitely thin target, that is, one in which there is no appreciable attenuation of the

beam due to target thickness, the above expression can be simplified by expanding the

exponential term, exp(!nts x) ' 1 ! nts x. This leads to a commonly-used expression for

the rate

R a; bð Þ ¼ I0
zpe

s a; bð ÞNt

S
; ð3:107Þ

where S is the area of the target containing Nt atoms of weight w and Nt = (w/M)NA. The

surface number density (measured, for example, in atoms cm!2) – or its alternative, the surface

density (given, for instance, in g cm!2), to which it is proportional – is ordinarily a more

accurate and easily determined quantity for thin targets than is the actual thickness. The basic

assumption here is that the beam diameter is smaller than that of the target.

. Fig. 3.51

Beam of projectile nuclei impinging on a circular disk of thickness x

n n

x
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In the geometry of a nuclear reactor, the target can be considered to be immersed in

a neutron gas, so that all target atoms Nt are exposed to the flux of neutrons. In such cases,

target thickness usually does not matter and one can write

R ¼ s a; bð ÞNtf; ð3:108Þ

where f is the neutron flux (which is usually given in neutrons cm$2 s$1), a parameter of the

reactor and the position of the irradiation within it. The same is true for reactions in stars,

except that this expression must be modified for the flux of both reactants.

Finally, in the production of radionuclides, it is necessary to include the effects of radio-

active decay during bombardment in the rate equation as discussed in >Chap. 7 of this
volume. The net production rate (dN/dt) will be the difference between the production (R)

and decay (lN) rates
dN=dt ¼ R $ lN : ð3:109Þ

The solution to this differential equation gives the number of atoms N produced as

a function of time,

N ¼ 1=lð ÞR 1$ e$lt! "
; ð3:110Þ

where l is the decay constant of a given radioactive product nucleus and t is the bombardment

time. The factor (1 $ e$lt) is called the saturation factor. This factor is an important

consideration in production of short-lived medical radionuclides for diagnosis and therapy,
and for efficient use of accelerator or reactor time. For bombardment times greater than one

half-life, this factor illustrates the law of diminishing returns; i.e., half the maximum activity is

formed after one half-life, 3/4 after two half-lives, etc.

3.9 Selected Nuclear Reaction Web Resources

Argonne Tandem Linac Accelerator System (ATLAS), http://www.phy.anl.gov/atlas

Australian National University Tandem, Canberra, http://www.rsphysse.anu.edu.au/nuclear

Bhabha Atomic Research Center, http://www.dae.gov.in/res.htm

Canada’s National Laboratory for Particle andNuclear Physics (TRIUMF), http://www.triumf.ca

Centre Européenne pour la Rechérche Nucléaire (CERN), http://public.web.cern.ch

China Institute of Atomic Energy, Beijing, http://www.nti.org/db/china/ciae.htm

Chinese Academy of Sciences, Lanzhou, http://english.imp.cas.cn/

Coupled Cyclotron Laboratory, Michigan State University, http://www.nscl.msu.edu
Cyclotron Research Center at Louvain, http://www.cyc.ucl.ac.be

Facility for Rare Isotope Beams (FRIB), http://www.frib.msu.edu/

Fermi National Accelerator Laboratory (FNAL), http://www.fnal.gov

Gesellschaft für Schwerionenforschung (GSI), http://www.gsi.de

Grand Accelerateur des Ions Lourds (GANIL), http://www.ganil.fr/

Holifield Radioactive Ion Beam Facility (HRIBF), http://www.phy.ornl.gov/hribf/hribf.html

Institute for Nuclear Physics, Jülich (COSY), http://www.fz-juelich.de

Joint Institute for Nuclear Research (JINF), http://www.jinr.dubna.su
Kernphysich Versneller Instituut (KVI), Groningen, http://www.kvi.nl

Laboratory National Legnaro (LNL), http://www.lnl.infn.it

Laboratory of Nuclear Science, Catania, http://www.ct.infn.it

Lawrence Berkeley Laboratory, http://www.lbl.gov
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Lawrence Livermore National Laboratory, http://www.llnl.gov

Los Alamos National Laboratory, http://www.lanl.gov

Los Alamos Print Archives (LANL), http://lib-www.lanl.gov/

National Nuclear Data Center, NNDC (BNL), http://www.nndc.bnl.gov/

Pacific Northwest National Laboratory, http://www.pnl.gov

Relativistic Heavy-Ion Collider (RHIC), http://www.bnl.gov/RHIC

Research Reactors Database, http://www.iaea.or.at/worldatom/rrdb/

RIKEN Accelerator Research Facility (RIKEN), http://www.rarf.riken.go.jp
The Svedberg Laboratory (TSL), http://www.tsl.uu.se

The Texas A&M Cyclotron Institute, http://cyclotron.tamu.edu
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