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1 Overview

Figure 1 shows pH as a function of concentration, for various pK, values, including weak acids and strong acids, as well as
intermediate-strength acids, which are particularly interesting.

The pK, values for some common acids and bases are tabulated in reference 1. In this document, we consider only
monoprotic acids.
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Figure 1: pH versus Concentration for Various pK, Values

These curves have a number of interesting properties:

1. For a very weak acid (such as the one represented by the red curve), there is a large range of concentrations (many
decades) where the pH closely follows the weak-acid rule of thumb, namely the following straight-line approximation:

K_+pC
szpa2pHA )

For an explanation of the notation used here, see reference 2 or reference 3.

If we express same relationship in terms of concentration (rather than log concentration) we get:

HT = VK, Cy, @

2. For an acid that is not very weak but also not what we would call a “strong” acid (such as the one represented by the
brown curve), the pH follows the weak-acid rule of thumb for a while, but then bends up to follow the strong-acid
rule, namely the following straight-line approximation:

pH = pCy, 3)

To say the same thing in other words: It is interesting that over the whole range from pK, =0 to pK, =5 or 6, the acid
follows the weak-acid rule at high concentration, but then follows the strong-acid rule at moderately low concentration.

The meaning of equation 3 is clear: it just says that all the acid molecules are ionized (and that auto-ionization of the



water molecules is negligible). This is what we expect for a reasonably concentrated strong acid ... and it also makes
sense for a moderately-dilute moderately-weak acid. Simple entropy considerations suggest that greater dilution favors
greater ionization.

3. Eventually all the curves bend over to join the ultra-dilute asymptote (virtually pure water), namely the following
horizontal straight-line approximation:

H = N @
pH = ) 4

2 Handy Estimates

1. You can get a good estimate by reading the curves in figure 1 and interpolating.

2. If you want to calculate an estimate, the three straight-line approximations mentioned in section 1 can be combined via
a two-step process, namely:

o First compute the weak-acid approximation and the strong-acid approximation. If the weak-acid rule claims your
acid is stronger than a strong acid, it’s obviously wrong. Use the strong acid rule instead. More specifically, use
whichever predicts the higher pH (either the strong-acid rule or the weak-acid rule).

o Secondly, compute the pure-water approximation. If the result of the previous step predicts a higher pH than
pure water, it’s obviously wrong; use the water pH instead. More specifically, use whichever predicts the lower
pH (either the result from the previous step or the water pH).

3. If you are anywhere near a computer, it is easy to compute the exact answer, as discussed in section 3.

3 Numerical Evaluation

The curves in figure 1 were computed by solving the following equation. It is a cubic polynomial, with one positive root and
two negative roots. The positive root is the only one that makes sense as a concentration.

[H*] + K, [H? - (K,,+K,C,,) [H1-K,K, = 0 5)

Compare equation 25.

It is easy to solve equation 5 with an iterative root-finding algorithm. I’ve had good luck with the Brent algorithm (reference
4).

In contrast, beware that standard “algebraic” formulas for solving the cubic can give wrong answers in some cases.
Depending on details of the implementation, the formulas can be numerically unstable. That is to say, the result gets trashed
by roundoff errors. Specifically: I tried using the standard library routine gs1_poly complex_solve cubic() and it failed
spectacularly for certain values of pK, and pCy,. Some of the alleged results were off by multiple orders of magnitude. Some

of the alleged results were complex numbers, even though the right answers were real numbers. It might be possible to
rewrite the code to make it behave better, but that’s not a job I'm eager to do.

Lesson #1: Something that looks like an “exact” closed-form solution might not be at all suitable for real-world numerical
calculation ... whereas an approximate, iterative solution might be highly accurate in practice.

Lesson #2: The failure of the algebraic method serves as a reminder of the difference between uncertainty and significance.
The inputs to the method might or might not be uncertain; it doesn’t actually matter. The output (i.e. the root as plotted in
figure 1) has a tolerance of a few percent. The internal calculations use IEEE double-precision floating point, which is good
to about 16 decimal digits ... which is not enough for the task at hand. Even though the tolerance allows uncertainty in the
second digit, there is significance in the 16th digit and beyond. So, if you see a number of the form:

( 1.497925297894696 ... )

X = ©)
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you should not assume it is safe to round things off. In this case, such a number already has too few digits. For more on this,
see reference 5.

The C++ code to calculate the pH as a function of concentration can be found in reference 6.

4 Derivation

4.1 Cubic

For an explanation of the notation used here, see reference 2 or reference 3.

Equation 5 can be derived from the definition of the acid dissociation constant:

H™[A™
K, = 1A @
[HA]
and the water dissociation constant:
K, = [H*[OH] ®)

and the conservation laws, namely conservation of A-groups:
[AT]+[HA] = Cua )
as well as conservation of charge:
[H*]-[A7]-[OH7] = O 10)
That gives us four equations in four unknowns. Turning the crank on the algebra gives us
[H*] + K, [H*]> - (K,, + K, C,,,) [HT1-K, K,, = O (11)

which is the same as equation 5. The details of the derivation are given in section 4.2, leading to a fancier version of this
equation, namely equation 25.

4.2 Cubic, with Buffer

Let’s consider a system that is the same as in section 4.1, except that we also add a certain amount of very strong base. This
gives us a buffer solution.

As in equation 7 the acid dissociation constant is:

Kk . [HT[AT] W)
[HA]

As in equation 8 the water dissociation constant is:

K,, = [H*[OH7] 13)



And as in equation 9, A-groups are conserved:

[AT]+[HA] = Cua (14)
At this point, we add a new equation, stating that the B-groups are conserved:

[B*]+[BOH] = Caon (15)
and since we are assuming the base is very strong, we can immediately simplify this to
B*] = Csou (16)
and as in equation 10, the charge is conserved, except that now we have to include the base:
[H*]1+ [B*]-[AT]-[OHT] = O (17

Now we turn the crank. We start by plugging into equation 12, using equation 14 to eliminate the unknown [HA] from the
system of equations.

That gives us

H'T[A™
ko HIAT )
CHA - [A_]
hence:
K,C,,—K,JAT] = [H[AT] 19)
hence:
KaCHA
- = 20
[A7] HY+ K, (20)

We now plug into the charge-conservation expression, equation 17, using equation 16, equation 20, and equation 13 to get
rid of all the unknowns. That gives us

KaCHA Kw

[H+] + CBOH - - =0 (A)
[H*] + K, [H*)

Multiplying through by [H*] gives us

K(lCHA
[H*]? + [H*]Cyyy — [H] -K, =0 (22
[H* + K,

Multiplying through by the remaining denominator gives us



[H*]? + [H'? K, + [H*>Cyopy + [HY K,Cpoy — [HTIK,C,y - [HT1K,, —K,K,, = 0 (23)
which can be rearranged to give the “usual” result:
[H*P + (Cyoy + K,) H> + (K,Cpo — K,, — K,Cp ) [H 1=K, K,, = 0 (24)

By setting Cy,,, to zero we obtain equation 5, so you can see why we didn’t bother showing the derivation until now.
Now suppose we throw in some strong acid HA” in addition to (or instead of) the strong base. You can easily show that the

only thing that matters is Q, namely the difference between the amount of strong base and the amount of strong acid. This
gives us a more general equation:

[H* +(Q+K,) [H)? +(K,0-K,, - K,C,,, )[H1-K,K,, = 0 (25)
where Q = Cyy — Cpyue

4.3 Quadratic

It is sometimes convenient to restrict attention to the parts of figure 1 that are not too near the top. That is, we focus attention
on solutions that are definitely acidic, with a pH well below the pH of water. In this case, equation 5 simplifies to:

[H? + K, [H1-K,C,, =0 (26)

as you can see by starting with equation 5 and setting K, to zero. Equation 26 can also be easily derived directly from
equation 7, equation 9, and the simplified charge-conservation law:

H-[AT] = 0 21
Equation 26 is a quadratic polynomial. It has one positive root and one negative root.
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