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Throughout much of human history, “airs” or gases were not believed to be
matter at all; their apparently weightless nature and their ability to move about
freely and fill all available space, while carrying with them definite physical
properties such as odor and sometimes color, conferred upon them a somewhat
mysterious nature. Even the scientist Robert Boyle wrote about “The Strange
Subtility, Great Efficacy and Determinate Nature of Effluviums”.

The invention of the sensitive balance in the early seventeenth century
showed once and for all that gases are matter, and the “pneumatic era” of
chemistry was thus launched; the behavior of gases was soon to prove an invalu-
able tool in the development of the atomic theory of matter.

We begin our formal study of matter in this course with the study of gases
because here we can see the behavior of matter at its simplest: individual
molecules, acting as individuals, almost completely uncomplicated by interac-
tions and interferences between each other. Later on, our knowledge of gases
will serve as the pathway to our understanding of the far more complicated
condensed phases (liquids and solids); here, the theory of gases will no longer
give us correct answers, but it will provide us with a model that will at least
help us to rationalize the behavior of these more complicated states of matter.
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1 Observable properties of gases

Let us start with what we can observe experimentally about gases. First, we
know that a gas has no definite volume or shape; a gas will fill whatever volume
is available to it. This property of diffusion implies that the molecular units of
a gas are in rapid, random motion, and that they are far enough away from each
other that this motion is unimpeded by interactions between the molecules.

The other outstanding characteristic of gases, their low densities, is another
indication that the average distance between molecules is very large. One mole
of H2O molecules at 100 ◦C at 1 atm pressure occupies a volume of 18.8 cm3,
whereas the same quantity of water vapor at the same temperature and pressure
has a volume of 30200 cm3, more than 1000 times greater.

The most remarkable property of gases, however, is that to a very good
approximation, they all behave the same way in response to changes in temper-
ature and pressure, expanding or contracting by predictable amounts. This is
very different from the behavior of liquids or solids, in which the properties of
each particular substance must be determined individually.

Pressure exerted by a gas

Pressure is defined as force per unit area. To visualize this, imagine some gas
trapped in a cylinder having one end enclosed by a freely moving piston. In
order to keep the gas in the container, a certain amount of weight (force, f)
must be placed on the piston so as to exactly balance the force exerted by the
gas on the bottom of the piston, and tending to push it up. The pressure of the
gas is simply the quotient f/A, where A is the cross-section area of the piston.

The barometer The column of air above us exerts a force on each 1-cm2 of
surface equivalent to a weight of about 1034 g1. In the early 17th century the
Italian Evangelista Torricelli invented a device to measure this pressure. The
barometer consists of a vertical glass tube closed at the top and evacuated, and
open at the bottom, where it is immersed in a dish of a liquid. The atmospheric
pressure acting on this liquid will force it up into the evacuated tube until
the weight of the liquid column exactly balances the atmospheric pressure. If
the liquid is mercury, the height supported will be about 760 cm; this height
corresponds to standard atmospheric pressure.

1This figure is obtained by solving Newton’s law f = ma for m, using the acceleration of
gravity for a:

m =
f

a
=

101375 kg m−1 s−2

9.8 m s−2
= 10340 kg m−2 s−1 = 1034 g cm−2



       

1 OBSERVABLE PROPERTIES OF GASES 4

AAA
AAA
AAA

AA
AA
AA
A A
A
A

gas whose pressure 
is to be measured

difference between 
atmospheric pressure and 

gas pressure is 
proportional to difference 

in liquid levels

AAAAA
AAAAA
AAAAA
A
A
A
A
A
A
A
A

AA

h
ei

g
ht

 o
f 

 li
qu

id
 c

ol
u

m
n

su
p

po
rt

e
d 

by
 a

tm
o

sp
he

ric
 p

re
ss

u
re

a
tm

os
ph

er
ic

 p
re

ss
u

re
 1

0
34

 g
 c

m
Ð2

Figure 1: Measurement of gas pressure: the barometer and manometer

A modification of the barometer, the U-tube manometer, provides a simple
device for measuring the pressure of any gas in a container. The U-tube is
partially filled with mercury, one end is connected to container, while the other
end is left open to the atmosphere. The pressure inside the container is found
from the difference in height between the mercury in the two sides of the U-tube.

Pressure units The unit of pressure in the SI system is the pascal (Pa),
defined as a force of one newton per square metre (Nm−2 or kg m−1s−2). In
chemistry, it is more common to express pressures in units of atmospheres or
torr :

1 atm = 1.01325E5 Pa = 760 torr

The older unit millimetre of mercury (mm Hg) is almost the same as the torr;
it is defined as one mm of level difference in a mercury barometer at 0 ◦C.
In meteorology, the pressure unit most commonly used is the bar ; 1 bar =
105 N m−2 = 0.987 atm. In engineering work the pound per square inch is often
used; standard atmospheric pressure is 14.7 psi.

The volume occupied by a gas

The volume of a gas is simply the space in which the molecules of the gas are free
to move. If we have a mixture of gases, such as air, the various gases will occupy
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the same volume at the same time, since they can all move about freely. The
volume of a gas can be measured by trapping it above mercury in a calibrated
tube known as a gas burette. The SI unit of volume is the cubic metre, but in
chemistry we more commonly use the litre and the millilitre (ml). The cubic
centimetre (cc) is also frequently used; it is very close to 1 ml.

The temperature of a gas

If two bodies are at different temperatures, heat will flow from the warmer to the
cooler one until their temperatures are the same. This is the principle on which
thermometry is based; the temperature of an object is measured indirectly by
placing a calibrated device known as a thermometer in contact with it. When
thermal equilibrium is obtained, the temperature of the thermometer is the
same as the temperature of the object.

Temperature scales

A thermometer makes use of some temperature-dependent quantity, such as the
density of a liquid, to allow the temperature to be found indirectly through
some easily measured quantity such as the length of a mercury column. The
resulting scale of temperature is entirely arbitrary; it is defined by locating its
zero point, and the size of the degree unit.

The Celsius temperature scale locates the zero point at the freezing temper-
ature of water; the Celsius degree is defined as 1/100 of the difference between
the freezing and boiling temperatures of water at 1 atm pressure.

The older Fahrenheit scale placed the zero point at what was imagined to
be the coldest possible temperature in England at the time, and the 100◦

point coincided approximately with body temperature. On this scale, wa-
ter freezes at 32◦F and boils at 212◦F. The Fahrenheit scale is a finer
one than the Celsius scale; there are 180 Fahrenheit degrees in the same
temperature interval that contains 100 Celsius degrees, so 1C◦ = 9

5
F◦.

Since the zero points are also different by 32F◦, conversion between tem-
peratures expressed on the two scales requires the addition or subtraction
of this offset, as well as multiplication by the ratio of the degree size 2.

Absolute temperature

In 1787 the French mathematician and physicist Jacques Charles discovered that
for each Celsius degree that the temperature of a gas is lowered, the volume of

2You should be able to derive the formula for this conversion. Notice also that temperature
is expressed by placing the degree symbol in front of the scale abbreviation (37◦C), whereas
a temperature interval is written with the degree sign following the symbol (3C◦).
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the gas will diminish by 1
273 of its volume at 0 ◦C. The obvious implication

of this is that if the temperature could be reduced to −273 ◦C, the volume of
the gas would contract to zero. Of course, all real gases condense to liquids
before this happens, but at sufficiently low pressures their volumes are linear
functions of the temperature (Charles’ Law), and extrapolation of a plot of
volume as a function of temperature predicts zero volume at −273.15 ◦C (See
Fig. 3). This temperature, known as absolute zero, corresponds to the total
absence of thermal energy.

The temperature scale on which the zero point is −273.15 ◦C was suggested
by Lord Kelvin, and is usually known as the Kelvin scale. Since the size of the
Kelvin and Celsius degrees are the same, conversion between the two scales is a
simple matter of adding or subtracting 273.15; thus room temperature, 20 ◦C,
is about 293◦K. Because the Kelvin scale is based on an absolute, rather than
on an arbitrary zero of temperature, it plays a special significance in scientific
calculations; most fundamental physical relations involving temperature are ex-
pressed mathematically in terms of absolute temperature. In engineering work,
an absolute scale based on the Fahrenheit degree is commonly used; this is
known as the Rankine scale.

2 Empirical laws of gas behavior

Pressure-volume: Boyle’s Law

Robert Boyle3 showed that the volume of air trapped by a liquid in the closed
short limb of a J-shaped tube decreased in exact proportion to the pressure
produced by the liquid in the long part of the tube. The trapped air acted
much like a spring, exerting a force opposing its compression. Boyle called this
effect “the spring of the air”, and published his results in a pamphlet of that
title.

Boyle’s law can be expressed as

PV = constant (1)

and is true only if the number of molecules n and the temperature are held con-
stant. This is an equation of inverse proportionality ; any change in the pressure
is exactly compensated by an opposing change in the volume. As the pressure
decreases toward zero, the volume will increase without limit. Conversely, as
the pressure is increased, the volume decreases, but can never reach zero. A
plot of the pressure of an ideal gas as a function of its volume yields a plot

3Robert Boyle (1627-1691) was an English natural philosopher and early believer in atom-
ism whose inquiring mind and prolific writings have led many to call him the father of chem-
istry. His famous book The Skeptical Chymist, the first Chemistry book ever written, laid the
foundations for the further development of atomic theory.
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Figure 2: Boyle’s law: pressure-volume isotherms of an ideal gas

whose form is that of a hyperbola. There will be a separate P-V plot for each
temperature; a single P-V plot is therefore called an isotherm.

A related type of plot with which you should be familiar shows the product
PV as a function of P . You should understand why this yields a straight line,
and how the position of this line varies with the temperature.

Volume and temperature: Charles’ law

The discovery that all gases expand by the same amount as the temperature is
raised was made independently by the French scientists Jacques Charles (1746-
1823) and Joseph Gay-Lussac (1778-1850). This relation is now usually stated
more explicitly: the volume of a gas confined against a constant pressure is
directly proportional to the absolute temperature.

Volume and number of molecules: Avogadro’s law

Gay-Lussac noticed that when two gases react, they do so in volume ratios that
can always be expressed as small whole numbers. Thus when hydrogen burns in
oxygen, the volume of hydrogen consumed is always exactly twice the volume
of oxygen. The Italian scientist Amadeo Avogadro drew the crucial conclusion:
these volume ratios must be related to the relative numbers of molecules that
react, and so equal volumes of gases, measured at the same temperature and
pressure, contain equal numbers of molecules. Avogadro’s law thus predicts a
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Figure 3: The law of Charles and Gay-Lussac: temperature dependence of the
volume

directly proportional relation between the number of moles of a gas and its
volume.

The ideal gas equation of state

If the variables n, P , V , and T have known values, then a gas is said to be in
a definite state, meaning that all other physical properties of the gas are also
defined. The relation between these state variables is known as an equation of
state.

The ideal gas equation of state can be derived by combining the expressions
of Boyle’s, Charles’, and Avogadro’s laws (you should be able to do this!). This
equation is usually written

PV = nRT (2)

where the proportionality constant R is known as the gas constant. This is one
of the few equations you must commit to memory in this course; you should
also know the common value and units of R.

An ideal gas is defined as a hypothetical substance that obeys the ideal gas
equation of state. We will see later that all real gases behave more and more
like an ideal gas as the pressure approaches zero. A pressure of only 1 atm
is sufficiently close to zero to make this relation useful for most gases at this
pressure.



      

2 EMPIRICAL LAWS OF GAS BEHAVIOR 9

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

P

V T

Each point on this surface represents a possible com-
bination of (P, V, T ) for an ideal gas. The three sets
of lines inscribed on the surface correspond to states in
which one of these three variables is held constant. The
curved lines, being lines of constant temperature, are
isotherms, and are plots of Boyle’s law. The long-dashed
lines are isobars and represent Charles’ law plots. The
short-dashed lines, known as isochors, show all values of
(P, T ) consistent with various fixed volumes.

Figure 4: P-V-T behavior of an ideal gas



         

2 EMPIRICAL LAWS OF GAS BEHAVIOR 10

Molar volume of a gas: standard temperature and pressure

The set of conditions T = 273K and P = 1atm is known as standard temperature
and pressure, usually denoted STP. Substituting these values into the ideal gas
equation of state and solving for V yields a volume of 22.414 litres for 1 mole.

The standard molar volume 22.4 L mol−1 is a value worth memorizing,
but remember also that it is valid only at STP. The molar volume at other
temperatures and pressures can easily be found by simple proportion.

Problem Example 1
Calculate the approximate molar mass of a gas whose measured density
is 3.33 g/L at 30 ◦C and 780 torr.

Solution. From the ideal gas equation, the number of moles contained
in one litre of the gas is

n =
PV

RT
=

780/760 atm)(1.00 L)

(.08201 L atm mol−1 K)(393K)
= .0413 mol

The molecular weight is therefore

(3.33 g L−1)/(0.0413 mol L−1 = 80.6 g mol−1

Problem Example 2
Estimate the average distance between the molecules in a gas at 1 atm
pressure and 0 ◦C.

Solution. Consider a 1-cm3 volume of the gas, which will contain
6.02E23/22400 = 2.69E19 molecules. The volume per molecule (not the
same as the volume of a molecule, which for an ideal gas is zero!) is just
the reciprocal of this, or 3.72 × 10−20 cm3. Assume that the molecules
are evenly distributed so that each occupies an imaginary box having this
volume. The average distance between the centers of the molecules will
be defined by the length of this box, which is the cube root of the volume
per molecule:

(3.72× 10−20)
1
3 = 3.38× 10−7 cm = 3.4 nm

Molecular weight and density of a gas

Since all gases have the same molar volume at the same temperature and pres-
sure, we can easily determine the number of moles contained in a sample of any
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gas. If, in addition, we measure the mass of the gas, we can determine its molar
mass.

This is the basis of a simple and widely used procedure for determining
the molecular weight of a substance. It is known as the Dumas method, after
the French chemist Jean Dumas (1800-1840) who developed it. One simply
measures the weight of a known volume of gas and converts this volume to its
STP equivalent, using Boyle’s and Charles’ laws. The weight of the gas divided
by its STP volume yields the density of the gas, and the density multiplied by
22.4 L mol−1 gives the molecular weight.

Pay careful attention to the examples of gas density calculations shown in
your textbook. You will be expected to carry out calculations of this kind,
converting between molecular weight and gas density (mass and volume).

Problem Example 3
A mixture of O2 and nitrous oxide, N2O is sometimes used as a mild
anesthetic in dental surgery. A certain mixture of these gases has a density
of 1.482 g L−1 at 25 ◦C and 0.980 atm. What was the mole-percent of N2O
in this mixture?

Solution: First, find the density the gas would have at STP:

(1.482 g L−1)×
(

298

273

)(
1

.980

)
= 1.65 g L−1

The molar mass of the mixture is (5 g L−1)(22.4 L mol−1) = 37.0 g mol−1.
The molecular weights of O2 and N2O are 32 and 44, respectively. Thus
the fraction of the heavier gas in the mixture is

37− 32

44− 32
=

5

12
= .42

3 Mixtures of gases: Dalton’s law of partial
pressures

The ideal gas equation of state applies to mixtures just as to pure gases. It was
in fact with a gas mixture, ordinary air, that Boyle, Gay-Lussac and Charles
did their early experiments. The only new concept we need in order to deal
with gas mixtures is the partial pressure.

The pressure exerted by a gas depends on the force exerted by each molecular
collision with the walls of the container, and on the number of such collisions
in a unit of area per unit time. If a gas contains two kinds of molecules, each
species will engage in such collisions, and thus make a contribution to the total
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pressure in exact proportion to its abundance in the mixture. The contribution
that each species makes to the total pressure of the gas is known as the partial
pressure of that species.

The above is essentially a statement of Dalton’s law of partmal pressures.
Algebraically, we can express this law by

Ptotal = P1 + P2 + . . . =
∑
i

Pi (3)

Dalton himself stated this law in a simple and vivid way:

Every gas is a vacuum to every other gas.

The partial pressure of any one gas is directly proportional to its abundance
in the mixture, and is just the total pressure multiplied by the mole fraction of
that gas in the mixture4.

For example, about 78% of the molecules of air consist of nitrogen. The
mole fraction of N2 in air is therefore 0.78, and the partial pressure of N2 in air
is 0.78 times the atmospheric pressure.

Molar mass of a gas mixture A gas made up of more than one kind of
molecule will have a molar mass that is a weighted average of the molar masses
of its components. (By the way, the older term “molecular weight” implies a
certain mass possessed by individual molecules, so it is commonly modified by
the prefix “average” in the context of a gas mixture.)

The molar mass of a mixture of gases is just the sum of the mole fraction of
each gas, multiplied by the molar mass of that substance. The molar mass of
dry air, for example, is approximately

(0.78× 28 g mol−1) + (0.21× 32 g mol−1) = 28.6 g mol−1

4 The kinetic molecular theory of gases

The properties such as temperature, pressure, and volume, together with other
properties related to them (density, thermal conductivity, etc.) are known as
macroscopic properties of matter; these are properties that can be observed in
bulk matter, without reference to its underlying structure or molecular nature.

By the late 19th century the atomic theory of matter was sufficiently well
accepted that scientists began to relate these macroscopic properties to the

4The mole fraction is just the number of moles of a given substance, divided by the number
of moles of all substances present in the mixture; thus for substance i, Xi = ni ÷

∑
j
nj .
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behavior of the individual molecules, which are described by the microscopic
properties of matter. The outcome of this effort was the kinetic molecular
theory of gases. This theory applies strictly only to a hypothetical substance
known as an ideal gas; we will see, however, that it describes the behavior of
real gases at ordinary temperatures and pressures quite accurately, and serves
as an extremely useful model for treating gases under non-ideal conditions as
well.

The basic tenets of the kinetic-molecular theory are as follows:

1. A gas is composed of molecules that are separated by average distances
that are much greater than the sizes of the molecules themselves. The
volume occupied by the molecules of the gas is negligible compared to the
volume of the gas itself.

2. The molecules of an ideal gas exert no attractive forces on each other, or
on the walls of the container.

3. The molecules are in constant random motion, and as material bodies,
they obey Newton’s laws of motion. This means that the molecules move
in straight lines until they collide with each other or with the walls of the
container.

4. Collisions are perfectly elastic; when two molecules collide, they change
their directions and kinetic energies, but the total kinetic energy is con-
served. Collisions are not “sticky”.

5. The average kinetic energy of the gas molecules is directly proportional
to the absolute temperature. (Notice that the term “average” is very
important here; the velocities and kinetic energies of individual molecules
will span a wide range of values, and some will even have zero velocity at
a given instant.) This implies that all molecular motion would cease if the
temperature were reduced to absolute zero.

According to this model, most of the volume occupied by a gas is empty
space; this is the main feature that distinguishes gases from other forms of
matter, in which the molecules are constantly in contact with each other. The
gas molecules are in rapid and continuous motion; at ordinary temperatures
and pressures their velocities are of the order of 0.1-1 km/sec and each molecule
experiences approximately 1010 collisions with other molecules every second.

Kinetic interpretation of gas pressure The kinetic molecular theory makes
it easy to see why a gas should exert a pressure on the walls of a container. Any
surface in contact with the gas is constantly bombarded by the molecules. At
each collision, a molecule moving with momentum mv strikes the surface. Since
the collisions are elastic, the molecule bounces back with the same velocity in
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the opposite direction. This change in velocity ∆v in a time interval ∆t is
equivalent to an acceleration; from Newton’s second law F = ma, a force F is
thus exerted on the surface of area A, exerting a pressure F/A.

Kinetic interpretation of temperature According to the kinetic molecular
theory, the average kinetic energy of an ideal gas is directly proportional to the
temperature. Kinetic energy is the energy a body has by virtue of its motion:

ke =
mv2

2

As the temperature of a gas rises, the average velocity of the molecules will
increase; a doubling of the temperature will increase this velocity by a factor of
four. Collisions with the walls of the container will transfer more momentum,
and thus more kinetic energy, to the walls. If the walls are cooler than the gas,
they will get warmer, returning less kinetic energy to the gas, and causing it to
cool until thermal equilibrium is reached.

Because temperature depends on the average kinetic energy, the concept of
temperature only applies to a statistically meaningful sample of molecules. We
will have more to say about molecular velocities and kinetic energies farther on.

Kinetic explanation of Boyle’s law Boyle’s law is easily explained by the
kinetic molecular theory. The pressure of a gas depends on the number of
times per second that the molecules strike the surface of the container. If we
compress the gas to a smaller volume, the same number of molecules are now
acting against a smaller surface area, so the number striking per unit of area,
and thus the pressure, is now greater.

Kinetic explanation of Charles’ law Kinetic molecular theory states that
an increase in temperature raises the average kinetic energy of the molecules.
If the molecules are moving more rapidly but the pressure remains the same,
then the molecules must stay farther apart, so that the increase in the rate at
which molecules collide with the surface of the container is compensated for by
a corresponding increase in the area of this surface as the gas expands.

Kinetic explanation of Avogadro’s law If we increase the number of gas
molecules in a closed container, more of them will collide with the walls per
unit time. If the pressure is to remain constant, the volume must increase in
proportion, so that the molecules strike the walls less frequently, and over a
larger surface area.
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Kinetic interpretation of gas viscosity

The molecular motion due to the temperature is sometimes called thermal mo-
tion; it is always present, and is of course entirely random in nature. If the gas
is flowing through a pipe or tube, then an additional non-random translational
motion is superimposed on the thermal motion, and this is what we think of as
the “flow” of the gas.

There is a slight problem, however. Molecules flowing near the center of
the pipe collide mostly with molecules moving in the same direction at about
the same velocity, but those that happen to find themselves near the wall will
experience frequent collisions with the wall. Since the molecules in the wall of
the pipe are not moving in the direction of the flow, they will tend to absorb
more kinetic energy than they return, with the result that the gas molecules
closest to the wall of the pipe are slowed down. Their random thermal motion
will eventually take them deeper into the stream, where they will collide with
other flowing molecules and slow them down. This gives rise to a resistance
to flow known as viscosity, and is the reason why a large number of pumping
stations are needed to force gas to flow through a long pipeline such as the one
extending from Calgary to Vancouver.

Effusion, diffusion and Graham’s law

If a tiny hole is made in the wall of a vessel containing a gas, then the rate at
which gas molecules leak out of the container will be proportional to the number
of molecules that collide with unit area of the wall per second, and thus with
the rms-average velocity of the gas molecules. This process, when carried out
under idealized conditions, is known as effusion.

Around 1830, the English chemist Thomas Graham (1805-1869) discovered
that the relative rates at which two different gases, at the same temperature
and pressure, will effuse through identical openings is inversely proportional to
the square root of its molar mass.

veffusion ∝
1√
M

(4)

Graham’s law, as this relation is known, is a simple consequence of the square-
root relation between the velocity of a body and its kinetic energy.

According to the kinetic molecular theory, the molecules of two gases at
the same temperature will possess the same average kinetic energy. If v̄1 and
v̄2 are the average velocities of the two kinds of molecules, then at any given
temperature ke1 = ke2 and

1
2m1v̄

2
1 = 1

2m2v̄
2
2 (5)
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or, in terms of molar masses M ,

v̄1

v̄2
=
√
M2

M1
(6)

Thus the average velocity of the lighter molecules must be greater than those
of the heavier molecules, and the ratio of these velocities will be given by the
inverse ratio of square roots of the molecular weights.

Although the conditions under which Graham’s law applies exactly are very
restrictive5, the law provides insight into a wide range of phenomena that depend
on the relative average velocities of molecules of different masses.

One application of this principle that was originally suggested by Graham
himself but was not realized on a practical basis until a century later is the sep-
aration of isotopes. The most important example is the enrichment of uranium
in the production of nuclear fission fuel. Uranium consists mostly of U238, with
only 0.7% of the fissionable isotope U235. Uranium is of course a metal, but it
reacts with fluorine to form a gaseous hexafluoride, UF6. In the very successful
gaseous diffusion process the UF6 diffuses repeatedly through a porous wall.
Each time, the lighter isotope passes through a bit more rapidly then the heav-
ier one, yielding a mixture that is minutely richer in U235. The process must be
repeated thousands of times to achieve the desired degree of enrichment.

5 More on the kinetic theory of gases

One reason the ideal gas is considered so important is that it is the only state
of matter whose properties can be precisely calculated from simple mechanics.
Even though they yield correct answers only for ideal gases, these calculations
(and the ideas on which they are based) can serve as very useful models to help
us understand the behavior of real gases, and to a limited extent, liquids as
well. Your emphasis in this section should on understanding these models and
the ideas behind them, rather than in memorizing the various equations.

The velocities of gas molecules

The trajectory of an individual gas molecule consists of a series of straight-
line paths interrupted by collisions. What happens when two molecules collide
depends on their relative kinetic energies; in general, a faster or heavier molecule

5Graham’s law is valid only under very restrictive conditions, the most important one being
that no other gases are present. Contrary to what is written in some textbooks and is often
taught, Graham’s Law does not accurately predict the relative rates of escape of the different
components of a gaseous mixture into the outside air, nor does it give the rates at which two
gases will diffuse through another gas such as air. See “Misuse of Graham’s Laws” by Stephen
J. Hawkes, J. Chem. Education 70(10) 836-837 1993.
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will impart some of its kinetic energy to a slower or lighter one. Two molecules
having identical masses and moving in opposite directions at the same speed
will momentarily remain motionless after their collision.

If we could measure the instantaneous velocities of all the molecules in a
sample of a gas at some fixed temperature, we would obtain a wide range of
values. A few would be zero, and a few would be very high velocities, but
the majority would fall into a more or less well defined range. We might be
tempted to define an average velocity for a collection of molecules, but here we
would need to be careful: molecules moving in opposite directions have velocities
of opposite signs. Because the molecules are in a gas are in random thermal
motion, there will be just about as many molecules moving in one direction as in
the opposite direction, so the velocity vectors of opposite signs would all cancel
and the average velocity would come out to zero. Since this answer is not very
useful, we need to do our averaging in a slightly different way.

The proper treatment is to average the squares of the velocities, and then
take the square root of this value. The resulting quantity is known as the root
mean square, or RMS velocity

vrms ≡

√∑
v2

n
(7)

which we will denote simply by v̄.
The formula relating the RMS velocity to the temperature and molar mass is

surprisingly simple, considering the great complexity of the events it represents:

vrms =

√
3RT
M

(8)

in which k = R ÷ 6.02E23, the “gas constant per molecule”, is known as the
Boltzmann constant.

Problem Example 4
What is vrms of a nitrogen molecule at 300K?

Solution. The molar mass of N2 is 28.01. Substituting in Eq 8 and
expressing R in energy units, we obtain

ṽ2 =
3× 8.31 J mol−1 K−1 × 300 K

28.01× 10−3 kg mol−1

which works out to 2.67E5 J kg−1. Recalling the definition of the joule,
1 J = 1 kg m2 s−2 and taking the square root,

vvms =

√
2.67E5 J kg−1 × 1 kg m2 s−2

1 J
= 517 m s−1

or

517 m s−1 × 1 km

103 m
× 3600 s

1 h
= 1860 km h−1
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The Boltzmann distribution

If we were to plot the number of molecules whose velocities fall within a series of
narrow ranges, we would obtain a slightly asymmetric curve known as a velocity
distribution. The peak of this curve would correspond to the most probable
velocity. This velocity distribution curve is known as the Maxwell-Boltzmann
distribution6.
The derivation of the Boltzmann curve is a bit too complicated to go into here, but its
physical basis is easy to understand. Consider a large population of molecules having
some fixed amount of kinetic energy. As long as the temperature remains constant,
this total energy will remain unchanged, but it can be distributed among the molecules
in many different ways, and this distribution will change continually as the molecules
collide with each other and with the walls of the container.

It turns out, however, that kinetic energy is acquired and handed around only in
discrete amounts which are known as quanta. Once the molecule has a given number
of kinetic energy quanta, these can be apportioned amongst the three directions of
motion in many different ways, each resulting in a distinct total velocity state for the
molecule. The greater the number of quanta, (that is, the greater the total kinetic
energy of the molecule) the greater the number of possible velocity states. If we assume
that all velocity states are equally probable, then simple statistics predicts that higher
velocities will be more favored because there are more higher velocity states.

Although higher kinetic energies are more probable statistically, there is only so

much kinetic energy available to the gas as a whole; every molecule that acquires

kinetic energy in a collision leaves behind another molecule having less. This tends

to even out the kinetic energies in a collection of molecules, and ensures that there

are always some molecules whose instantaneous velocity is near zero. The net effect

of these two opposing tendencies, one favoring high kinetic energies and the other

favoring low ones, is the peaked curve of Fig. 5. At higher temperatures (or with

lighter molecules) the latter constraint becomes less important, and the mean velocity

increases, but with a wider velocity distribution, the number of molecules having any

one velocity diminishes, so the curve tends to flatten out.

Derivation of the Ideal Gas Equation

The ideal gas equation of state came about by combining the empirically de-
termined laws of Boyle, Charles, and Avogadro, but one of the triumphs of the
kinetic molecular theory was the derivation of this equation from simple me-
chanics in the late nineteenth century. This is a beautiful example of how the
principles of elementary mechanics can be applied to a simple model to develop
a useful description of the behavior of macroscopic matter, and it will be worth
your effort to follow and understand the derivation.

6This relation was first worked out around 1850 by the great Scottish physicist, James
Clerk Maxwell, who is better known for discovering the laws of electromagnetic radiation.
Later, Ludwig Boltzmann put the relation on a sounder theoretical basis and simplified the
mathematics somewhat.
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Figure 5: Maxwell-Boltzmann distribution curves
Notice that because of the assymetry of this curve, the mean (rms average) velocity is
not the same as the most probable velocity, which is defined by the peak of the curve.

We begin by recalling that the pressure of a gas arises from the force exerted
when molecules collide with the walls of the container. This force can be found
from Newton’s law

f = ma = m
dv

dt
(9)

in which v is the velocity component of the molecule in the direction perpen-
dicular to the wall.

To evaluate the derivative, which is the velocity change per unit time, con-
sider a single molecule of a gas contained in a cubic box of length l. For simplicity
assume that the molecule is moving along the x-axis which is perpendicular to a
pair of walls, so that it is continually bouncing back and forth between the same
pair of walls. When the molecule of mass m strikes the wall at velocity vx (and
thus with a momentum mvx) it will rebound elastically and end up moving in
the opposite direction with momentum −mvx. The total change in momentum
per collision is thus 2mvx. After the collision the molecule must travel a distance
l to the opposite wall, and then back across this same distance before colliding
again with the wall in question. This determines the time between successive
collisions with a given wall; the number of collisions per second will be vx/2l.
The force exerted on the wall is the rate of change of the momentum, given by
the product of the momentum change per collision and the collision frequency:

force per molecule = f ≡ d(mvx)
dt

= (2mvx)
(vx

2l

)
=
mv2

x

l
(10)

Pressure is force per unit area, so the pressure exerted by the molecule on the
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wall of cross-section l2 becomes

pressure per molecule =
mv2

x

l3
=
mv2

x

V
(11)

in which V is the volume of the box.
We have calculated the pressure due to a single molecule moving at a con-

stant velocity in a direction perpendicular to a wall. If we now introduce more
molecules, we must interpret v2 as the rms-average v2. Also, since the molecules
are moving randomly in all directions, only one-third of their total velocity will
be directed along any one cartesian axis, so the total pressure exerted by N
molecules becomes

P =
N

3
mv2

V
(12)

in which V is the volume of the container.
Recalling that mv2

2 is the average translational kinetic energy ε, we can
rewrite the above as

PV =
1
3
Nmv2 =

2
3
Nε (13)

We know that the average kinetic energy is directly proportional to the temper-
ature, so that for a single molecule,

ε̄ =
mv2

2
3
2
kT (14)

in which the proportionality constant k is known as the Boltzmann constant.
For one mole of molecules we express this proportionality constant as NAk ≡ R,
in whcih R is the familiar gas constant. Substituting into Eq 13 yields the ideal
gas equation

PV = RT (15)

From Eq 13 it is apparent that the product RT has the dimensions of energy,
and it in fact represents the average translational kinetic energy per mole. This
means that the PV term, and thus its unit, the litre-atmosphere, is also an
energy unit. The relationship between the two kinds of units can be obtained
by recalling that 1 atm is 1.013E5 N m−2, so that

1 litre atm = 1000 cm3

(
1 m3

106 cm3

)
× 1.01325E5 N m2 = 101.325 J (16)

The gas constant R is one of the most important fundamental constants
relating to the macroscopic behavior of matter. It is commonly expressed in
both pressure-volume and in energy units:

R = 0.082057 litre atm mol−1 K−1 = 8.314 J mol−1K−1

Notice that the Boltzmann constant k, which appears in many expressions re-
lating to the statistical treatment of molecules, is just R ÷ 6.02E23, the gas
constant per molecule.
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How far does a molecule travel between collisions?

Molecular velocities in gases tend to be very high by our everyday standards.
This rapid, random motion inevitably results in frequent collisions between
molecules. The average distance a molecule moves between such collisions is
called the mean free path. This distance, denoted by λ, depends on the number
of molecules per unit volume and on their size. To avoid collision, a molecule
of diameter σ must trace out a path corresponding to the axis of an imaginary
cylinder whose cross-section is πσ2. The volume of the cylinder is πσ2λ. At
each collision the molecule is diverted to a new path and traces out a new ex-
clusion cylinder. After colliding with all n molecules in one cubic centimetre
of the gas it will have traced out a total exclusion volume of πnσ2λ = 1 cm3.
Solving for λ and applying a correction factor

√
2 to take into account exchange

of momentum between the colliding molecules (the detailed argument for this
is too complicated to go into here), we obtain

λ =
1√

2πnσ2
(17)

Small molecules such as He, H2, N2 and CH4 typically have diameters of around
30-50 nm. At STP the value of n, the number of molecules per cubic metre, is

6.02× 1023 mol−1

22.4× 10−3 m3 mol−1
= 2.69× 1025

Substitution into Eq 17 yields a value of around 10−7 m (100 nm) for most
molecules under these conditions. Although this may seem like a very small dis-
tance, it typically amounts to 100 molecular diameters, and more importantly,
about 30 times the average distance between molecules. This explains why such
gases conform very closely to the ideal gas law at ordinary temperatures and
pressures.

On the other hand, at each collision the molecule can be expected to change
direction. Because these changes are random, the net change in location a
molecule experiences during a period of one second is typically rather small.
Thus in spite of the high molecular velocities, the speed of molecular diffusion
in a gas is usually quite small.

The ionosphere and radio communication

At very low pressures, mean free paths are sufficiently great that collisions
between molecules become rather infrequent. Under these conditions, highly
reactive species such as ions, atoms, and molecular fragments that would or-
dinarily be destroyed on every collision can persist for appreciable periods of
time. The most important example of this occurs at the top of the Earth’s
atmosphere, at an altitude of 200 km, where the pressure is about 10−7 atm.
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Here the mean free path will be 107 times its value at 1 atm, or about 1 m.
In this part of the atmosphere, known as the thermosphere, the chemistry is
dominated by species such as O, O+

2 and HO which are formed by the action
of intense solar ultraviolet light on the normal atmospheric gases near the top
of the stratosphere. The high concentrations of electrically charged species in
these regions (sometimes also called the ionosphere) reflect radio waves and are
responsible for around-the-world transmission of mid-frequency radio signals.

The ion density in the lower part of the ionosphere (about 80 km altitude)
is so high that the radiation from broadcast-band radio stations is absorbed
in this region before these waves can reach the reflective high-altitude layers.
However, the pressure in this region (known as the D-layer) is great enough that
the ions recombine soon after local sunset, causing the D-layer to disappear and
allowing the waves to reflect off of the upper (F-layer) part of the ionosphere.
This is the reason that distant broadcast stations can only be heard at night.

Light bulbs An interesting application involving several aspects of the ki-
netic molecular behavior of gases is the use of a gas, usually argon, to extend
the lifetime of incandescent lamp bulbs. As a light bulb is used, tungsten atoms
evaporate from the filament and condense on the cooler inner wall of the bulb,
blackening it and reducing light output. As the filament gets thinner in cer-
tain spots, the increased electrical resistance results in a higher local power
dissipation, more rapid evaporation, and eventually the filament breaks.

The pressure inside a lamp bulb must be sufficiently low for the mean free
path of the gas molecules to be fairly long; otherwise heat would be conducted
from the filament too rapidly, and the bulb would melt. (Thermal conduction
depends on intermolecular collisions, and a longer mean free path means a lower
collision frequency). A complete vacuum would minimize heat conduction, but
this would result in such a long mean free path that the tungsten atoms would
rapidly migrate to the walls, resulting in a very short filament life and extensive
bulb blackening.

Around 1910, the General Electric Company hired Irving Langmuir as one
of the first chemists to be employed as an industrial scientist in North America.
Langmuir quickly saw that bulb blackening was a consequence of the long mean
free path of vaporized tungsten molecules, and showed that the addition of a
small amount of argon will reduce the mean free path, increasing the probabil-
ity that an outward-moving tungesten atom will collide with an argon atom. A
certain proportion of these will eventually find their way back to the filament,
partially reconstituting it. Krypton would be a better choice of gas than ar-
gon, since its greater mass would be more effective in changing the direction of
the rather heavy tungsten atom. Unfortunately, krypton, being a rarer gas, is
around 50 times as expensive as argon, so it is used only in “premium” light
bulbs.
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Density fluctuations: Why is the sky blue?

Although each molecule in a gas moves randomly, this very randomness ensures
that the molecules will quickly distribute themselves throughout the volume
occupied by the gas in a thoroughly uniform manner. The chances are virtually
zero that sufficiently more molecules might momentarily find themselves near
one side of a container than the other to result in an observable temporary
density or pressure difference.

This is a result of simple statistics. But statistical predictions are only
valid when the sample population is large. Consider what would happen if we
consider extremely small volumes of space: cubes that are about 10−7 cm on
each side, for example? Such a cell would contain only a few molecules, and
at any one instant we would expect to find some containing more or less than
others, although in time they would average out to the same value. The effect
of this statistical behavior is to give rise to random fluctuations in the density
of a gas over distances comparable to the dimensions of visible light waves.
When light passes through a medium whose density is non-uniform, some of
the light is scattered. The kind of scattering due to random density fluctuations
is called Rayleigh scattering, and it has the property of affecting (scattering)
shorter wavelengths more effectively than longer wavelengths.

The clear sky appears blue in color because the blue (shorter wavelength)
component of sunlight is scattered more. The longer wavelengths remain in the
path of the sunlight, available to delight us at sunrise or sunset.

Tyndall scattering If the air contains larger particles such as water droplets,
ice crystals, dust, or other particulate matter whose dimensions are greater than
those of visible light, another form of scattering occurs. In Tyndall scattering,
all colors are scattered equally, and light rays spread out, so the result is a
whitish haze and reduced visibility of distant objects.

Distribution of gas molecules in a gravitational field

Everyone knows that the air pressure decreases with altitude. This effect is
easily understood qualitatively through the kinetic molecular theory. Random
thermal motion tends to move gas molecules in all directions equally. In the
presence of a gravitational field, however, motions in a downward direction are
slightly favored. This causes the concentration, and thus the pressure of a gas to
be greater at lower elevations and to decrease without limit at higher elevations.

Since heavier molecules will be more strongly affected by gravity, their con-
centrations will fall off more rapidly with elevation. For this reason the partial
pressures of the various components of the atmosphere will tend to vary with al-
titude. The difference in pressure is also affected by the temperature; at higher
temperatures there is more thermal motion, and hence a less rapid fall-off of
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Figure 6: Decrease of pressure with altitude for air at 25 ◦C

pressure with altitude. Because of atmospheric convection and turbulence, these
effects are not observed in the lower part of the atmosphere, but in the upper-
most parts of the atmosphere the heavier molecules do tend to drift downward.

The exact functional relationship between pressure and altitude is known as
the barometric distribution law. It is easily derived using first-year calculus. For
air at 25 ◦C the pressure Ph at any altitude h is given by

Ph = P◦e
−.11h

in which P◦ is the pressure at altitude zero. This is a form of the very common
exponential decay law which we will encounter in several different contexts in
this course. An exponential decay (or growth) law describes any quantity whose
rate of change is directly proportional to its current value, such as the amount
of money in a compound-interest savings account or the density of a column of
gas at any altitude. The most important feature of any quantity described by
this law is that the fractional rate of change of the quantity in question (in this
case, ∆P/P or in calculus, dP/P ) is a constant. This means that the increase
in altitude required to reduce the pressure by half is also a constant, about 6 km
in the present case.
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6 Real gases: deviations from ideal behavior

A plot of PV as a function of the pressure of an ideal gas yields a horizontal
straight line. This implies that any increase in the pressure of the gas is exactly
counteracted by a decrease in the volume.

Effects of intermolecular repulsions We know, however, that this relation
cannot always be valid; a gas cannot be squeezed out of existence. As a gas is
compressed, the individual molecules begin to get in each other’s way, giving rise
to a very strong repulsive force acts to oppose any further volume decrease. We
would therefore expect the PV -vs.-P line to curve upward at high pressures,
and this is in fact what is observed for all gases.

Effects of intermolecular attractions At very close distances, all molecules
repel each other as their electron clouds come into contact. At greater distances,
however, brief statistical fluctuations in the distribution these electron clouds
give rise to a universal attractive force between all molecules. The more electrons
in the molecule (and thus the greater the molecular weight), the greater is
this attractive force. As long as the energy of thermal motion dominates this
attractive force, the substance remains in the gaseous state, but at sufficiently
low temperatures the attractions dominate and the substance condenses to a
liquid or solid.

The universal attractive force described above is known as the dispersion, or
London force. There may also be additional (and usually stronger) attractive
forces related to charge imbalance in the molecule or to hydrogen bonding.
These various attractive forces are often referred to collectively as van der Waals
forces.

The effect of intermolecular attractions on the PV-vs.-P plot would be to
hold the molecules slightly closer together, so that the volume would decrease
more rapidly than the pressure increases. The resulting curve would dip down-
ward as the pressure increases, and this dip would be greater at lower temper-
atures and for heavier molecules. At higher pressures, however, the stronger
repulsive forces would begin to dominate, and the curve will eventually bend
upward as before.

The effects of intermolecular interactions are most evident at low tempera-
tures and high pressures; that is, at high densities. As the pressure approaches
zero, the behavior of any gas will conform more and more closely to the ideal
gas equation of state, which should really be depicted as a limiting relation

lim
P→0

PV = nRT (18)
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Figure 7: PV -vs-P plots for real gases

Equations of state for real gases

How might we modify the ideal gas equation of state to take into account the
effects of intermolecular interactions? The first and most well known answer to
this question was offered by the Dutch scientist J.D. van der Waals in 1873.

van der Waals recognized that the molecules themselves take up space that
subtracts from the volume of the container, so that the “volume of the gas” V
in the ideal gas equation should be replaced by the term (V − b) where b is the
excluded volume, typically of the order of 20-100 cm3 mol−1.

The intermolecular attractive forces act to slightly diminish the frequency
and intensity of encounters between the molecules and the walls of the container;
the effect is the same as if the pressure of the gas were slightly higher than it
actually is. This imaginary increase is called the internal pressure, and we can
write

Peffective = P ideal − P intermal

Thus we should replace the P in the ideal gas equation by

P ideal = Peffective + P internal

Since the attractions are between pairs of molecules, the total attractive
force is proportional to the square of the number of molecules per volume of
space, and thus for a fixed number of molecules such as one mole, the force is
inversely proportional to the square of the volume of the gas; the smaller the
volume, the closer are the molecules and the greater the attractions between
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pairs (hence the square term) of molecules. The pressure that goes into the
corrected ideal gas equation is

P ideal = P +
a

V 2

in which the constant a expresses the magnitude of the attractive forces in a
particular gas and has a value of 106-107 atm cm6 mol−2.

The complete van der Waals equation of state thus becomes(
P +

a

V 2

)
(V − b) = nRT (19)

Although you do not have to memorize this equation, you are expected to
understand it and to explain the significance of the terms it contains. You should
also understand that the van der Waals constants a and b must be determined
empirically for every gas. This can be done by plotting the P-V behavior of the
gas and adjusting the values of a and b until the van der Waals equation results
in an identical plot. The constant a is related in a simple way to the molecular
radius; thus the determination of a constitutes an indirect measurment of an
important microscopic quantity.

The van der Waals equation is only one of many equations of state for
real gases. More elaborate equations are required to describe the behavior of
gases over wider pressure ranges. These generally take account of higher-order
nonlinear attractive forces, and require the use of more empirical constants.
Although we will make no use of them in this course, they are widely employed
in engineering work in which the behavior of gases at high pressures must be
accurately predicted.

The most striking feature of real gases is that they cease to remain gases
as the temperature is lowered and the pressure is increased. The graphs in
Fig. 8 illustrate this behavior; as the volume is decreased, the lower-temperature
isotherms suddenly change into straight lines. Under these conditions, the pres-
sure remains constant as the volume is reduced. This can only mean that the
gas is “disappearing” as we squeeze the system down to a smaller volume. In
its place, we obtain a new state of matter, the liquid. In the shaded region
of Fig. 8 on the right, two phases, liquid, and gas, are simultaneously present.
Finally, at very small volume all the gas has disappeared and only the liquid
phase remains. At this point the isotherms bend strongly upward, reflecting our
common experience that a liquid is practically incompressible.

The maximum temperature at which the two phases can coexist is called
the critical temperature. The set of (P, V, T ) corresponding to this condition is
known as the critical point. Liquid and gas can coexist only within the regions
indicated in Fig. 8 by the wedge-shaped cross section on the left and the shaded
area on the right. An important consequence of this is that a liquid phase cannot
exist at temperatures above the critical point.
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Figure 8: Critical behavior of a real gas

The critical temperature of carbon dioxide is 31 ◦C, so you can tell whether
the temperature is higher or lower than this by shaking a CO2 fire extinguisher;
on a warm day, you will not hear any liquid sloshing around inside. The critical
temperature of water is 374 ◦C, and that of hydrogen is only 33 ◦K.

If the region of the almost-vertical isotherms represents the liquid, what is
the state of the substance near the left side of either plot, but above the critical
point? The answer is that it is a highly-nonideal gas, perhaps best described
just as a “fluid”– but certainly not a liquid. One intriguing consequence of the
very limited bounds of the liquid state is that you could start with a gas at
large volume and low temperature, raise the temperature, reduce the volume,
and then reduce the temperature so as to arrive at the liquid region at the
lower left, without ever passing through the two-phase region, and thus without
undergoing condensation!

The supercritical state of matter, as the fluid above the critical point is often
called, possesses the flow properties of a gas and the solvent properties of a
liquid. Supercritical carbon dioxide is now used to dissolve the caffeine out of
coffee beans, and supercritical water has recently attracted interest as a medium
for chemically decomposing dangerous environmental pollutants such as PCBs.

c©1994 by Stephen K. Lower; all rights reserved. February 16, 1994
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substance Tb ( ◦K) Tc ( ◦K) Pc (atm) Vc (ml mol−1)
Helium 4.2 5.3 2.3 57.8
Hydrogen 20.4 33.2 12.8 65.0
Neon 27.1 44.5 26.9 41.7
Nitrogen 77.3 126 34.5 93.1
Carbon monoxide 81.7 133 34.5 93.1
Oxygen 90.2 155 50.1 74.4
Carbon dioxide - 304 72.9 94.0
Ammonia 240 405 111 72.1
Benzene 353 563 48.6 260
Water 373 647 218 55.3

Table 1: Critical constants of some common substances


